
Adi Fuchs, Noam Shalev and Avi Mendelson – Technion , Israel Institute of Technology

This work was supported in part by the Metro450 consortium

Understanding of GPGPU
Performance: Towards a
New Optimization Tool

Adi Fuchs, Noam Shalev and Avi Mendelson – Technion , Israel Institute of Technology

This work was supported in part by the Metro450 consortium

Bandwidth (in MB/s) for memory copy on two CPU, two GPU, and two 64-bit systems.

• GPU provide significant performance or power efficiency for parallel workloads

• However, even simple workloads are microarchitecture and platform sensitive

• Why do applications behave the way they do?

• GPGPU Profiling tools:

- complex and not conclusive

- mainly based on companies’ work (don’t expose undocumented behavior)

• Academic work

- some works suggest the use of targeted benchmarks

- some target specific structures or aspects

- many are based on “common knowledge”

Existing tools and work – Industry + Academia:

Goals:

 Unveil GPU microarchitecture characterizations

 …Including undocumented behavior!

 Auto-match applications to HW spec + HW/SW optimizations

Current work

 We have a series of CUDA benchmarks that explore different NVIDIA cards

 Each micro-benchmark pinpoints a different phenomena

 We focus on the memory system – has a huge impact on performance and power

 Benchmarks executed on 4 different NVIDIA systems

Long term vision…

 We wish to construct an application + HW characteristics database

 Based on this database we would like to construct a matching tool:

1. Given a workload – what type of hardware should be used?

2. Given workload + hardware – what optimizations to apply?

 Common microbenchmarks often target hierarchy (e.g. cache levels)

 Targeting hierarchy adds to the code’s complexity

 Targeting hierarchy harms portability! (machine dependent code)

 Our micro-benchmarks target behavior, not hierarchy

4 systems tested:

Micro-benchmark #1: Locality

 Explore sizes of cacheline/prefetch using small jumps of varying size

Micro-benchmark #1: Locality

0

10

20

30

40

50

60

70

80

90

100

4 16 64 256

K
er

n
el

 L
at

e
n

cy
(u

s)

small jump size (bytes)

Shared Memory

C2070 Quadro2000 GTX680 K20

 In all systems tested shared memory is latency is fixed no caching/prefetching

Micro-benchmark #1: Locality

0

100

200

300

400

500

600

4 16 64 256

K
er

n
el

 L
at

e
n

cy
(u

s)

small jump size (bytes)

Texture Memory

C2070 Quadro2000 GTX680 K20

 Texture memory caching is 32 bytes of size = 4 double precision coordinates

Micro-benchmark #1: Locality

0

100

200

300

400

500

600

4 16 64 256

K
er

n
el

 L
at

e
n

cy
(u

s)

small jump size (bytes)

Constant Memory

C2070 Quadro2000 GTX680 K20

 Constant memory has a 2-level hierarchy for 64 and 256 byte segments

Micro-benchmark #1: Locality

0

100

200

300

400

500

600

4 16 64 256

K
er

n
el

 L
at

e
n

cy
(u

s)

small jump size (bytes)

Global Memory

C2070 Quadro2000 GTX680 K20

 Global memory – CUDA 2.x systems support caching / prefetching

Micro-benchmark #2: Synchronization

 Examine the effects of varying synchronization granularity for memory writes

 Number of thread changes as well - each thread executes the same kernel:

Micro-benchmark #2: Synchronization

0

10

20

30

40

50

60

70

80

90

100

1 4 16 64 256 1024

K
er

n
el

 L
at

e
n

cy
 (

u
s)

#Sync instructions

Fermi Quadro 2000

 1 thread 4 threads 32 threads

 64 threads 128 threads 192 threads

 Fine-grained sync increase latency by 163%. 192 threads increase latency by 13%

Micro-benchmark #2: Synchronization

0

10

20

30

40

50

60

70

80

90

1 4 16 64 256 1024

K
er

n
el

 L
at

e
n

cy
 (

u
s)

#Sync instructions

K20

 1 thread 4 threads 32 threads

 64 threads 128 threads 192 threads

 Fine-grained sync increase latency by 281%. 192 threads increase latency by 38%

Micro-benchmark #3: Memory Coalescing

 Target: the ability of grouping memory accesses from different threads

 …And what happens when it’s impossible.

 Each thread reads 1K lines starting from a different offset.

Micro-benchmark #3: Memory Coalescing

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 16 32 64 128 256

A
ve

ra
ge

 r
ea

d
 la

te
n

cy
 (

u
s)

#Threads

Fermi Quadro2000
4bytes 8bytes 16bytes
32bytes 64bytes 128bytes
256bytes 512bytes 1024bytes

 Large offset = loss of locality. 192 threads+ Large offset = scheduler competition!

Micro-benchmark #3: Memory Coalescing

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 16 32 64 128 256

A
ve

ra
ge

 r
ea

d
 la

te
n

cy
 (

u
s)

#Threads

Tesla K20
4bytes 8bytes 16bytes
32bytes 64bytes 128bytes
256bytes 512bytes 1024bytes

 No competition – however, overall latency is larger.

Other benchmarks...

 Understanding GPUs performance + power = understanding microarchitecture!

 ... However microarchitecture is usually kept secret.

 Memory access patterns must be taken under considerations

 Loss of locality, resource competition , synchronizations significant side-effects

 Side-effects differ between GPU platforms (newer is not always better!)

 Extend the focused benchmarks to other GPU’s aspects.

 Extend the work to analyze programs’ behavior and correlate them

with HW characterizations

 Extend the work to other platforms such as Xeon Phi

 Extend the focused benchmarks to other GPU’s aspects.

 Extend the work to analyze programs’ behavior and correlate them

with HW characterizations

 Extend the work to other platforms such as Xeon Phi

