Understanding of GPGPU
Performance: Towards a
New Optimization Tool

Adi Fuchs, Noam Shalev and Avi Mendelson — Technion, Israel Institute of Technology

This work was supported in part by the Metro450 consortium

Intel Compiler, Architecture and Tools Conference - November 2013

iToday;sjlopics
» Background

> Viden

2O Urdbenchmanks o

Adi Fuchs, Noam Shalev and Avi Mendelson — Technion, Israel Institute of Technology

> Condudiens ¢ Rutre Werk

This work was supported in part by the Metro450 consortium ’

Intel Compiler, Architecture and Tools Conference - November 2013

* GPU provide significant performance or power efficiency for parallel workloads

* However, even simple workloads are microarchitecture and platform sensitive

200000
180000
160000
140000 Q9550 Linux
120000 sl Q9550 Windows
1 Al i7 920 Linux
/\\,’ﬁh_‘ \ . === {7920 Windows
8 e g U e GTX285 Linux
60000 " — — — GTX285 Windows
40000 HDSB870 Linux
" === HD5870 Windows
0 .
Bandwidth (in MB/s) for memory copy on two C PU, and two 64-bit systems.

« Why do applications behave the way they do?

Intel Compiler, Architecture and Tools Conference - November 2013

Existing tools and work — Industry + Academia:

 GPGPU Profiling tools:

- complex and not conclusive

- mainly based on companies’ work (don’t ¢)0se undocumented behavior)

e Academic work

v

- some works suggest the use of targeted be marks
- some target specific structures or aspe

- many are based on “common knowledge”

Intel Compiler, Architecture and Tools Conference - November 2013

Goals:

> Unveil GPU microarchitecture characterizations

Intel Compiler, Architecture and Tools Conference - November 2013

;Today;shTopics
» Background

» Vision
2O Ubenchmanks

-2 ConcllisionsEREUEUreW ok

Intel Compiler, Architecture and Tools Conference - November 2013

Current work

» We have a series of CUDA benchmarks that explore different NVIDIA cards

» Each micro-benchmark pinpoints a different phenomena

» We focus on the memory system — has a huge impact on performance and power

» Benchmarks executed on 4 different NVIDIA systems

Intel Compiler, Architecture and Tools Conference - November 2013

Long term vision...

» We wish to construct an application + HW characteristics database

» Based on this database we would like to construct a matching tool:

1. Given a workload — what type of hardware should be used?

2. Given workload + hardware — what optimizations to apply?

Intel Compiler, Architecture and Tools Conference - November 2013

iTodaygsiropics
gllBackgrolind

> Visiien

» benchmarlks

- AConclusionsEaEUtUreAW ok

I

Intel Compiler, Architecture and Tools Conference - November 2013

» Common microbenchmarks often target hierarchy (e.g. cache levels)

» Targeting hierarchy adds to the code’s complexity

”~

_
» Targeting hierarchy harms pgrtability! (machine dependent code)

e

> Our micro-benchmarks target behavior, not hierarchy

10

Intel Compiler, Architecture and Tools Conference - November 2013

4 systems tested:

C2070

Quadro 2000

GTXa680

Device Name

Tesla C2070

Quadro 2000

GeForce GTX 680

Tesla K20m

GPU Architecture Tesla Fermi Kepler Tesla
CUDA Driver
/ Runtime Version 50/5.0 50/5.0 50/5.0 50/5.0
CUDA Capability 2.0 21 3.0 15
Global memory size 6144 MBytes 1024 MBytes 4096 MBytes 4300 MBvtes
Multiprocessors 14 4 8 13
CUDA Cores/MP 32 48 192 192
Total number of cores 448 192 1336 2496
GPU Clock rate 1.15 GHz 1.25 GHz 1.06 GHz 0.71GHz
Memory Clock rate 1.5 GHz 1.3 GHz 3 GHz 2.6 GHz
Memory Bus Width 384-bit 128-bit 256-bit 320-bit
L2 Cache Size 786432 bytes 262144 bytes 524288 bytes 1310720 bytes
Constant memory size 65536 bytes 65536 bytes 65536 bytes 65536 bytes
Shared memory per block 49152 bytes 49152 bytes 49152 bytes 49152 bytes
Max registers per block 32768 32768 65536 65536
Warp size 32 32 32 32
Max threads / MP 1536 1536 2048 2048
Threads per block 1024 1024 1024 1024
3.2 0-32 3.2.0-32 3.2 0-38- 3.2 0-38-
Linux kernel version -generic -generic generic generic

Intel Compiler, Architecture and Tools Conference -

November 2013

Micro-benchmark #1: Locality

> Explore sizes of cacheline/prefetch using small jumps of varying size

..\‘“
”
P

/

Small Large Jump-4K- Small Large Jump=4K-s

md

Address: 0. 1 s 4K 4K+1 4K+s

Intel Compiler, Architecture and Tools Conference - November 2013

OurdBenchmarks!

Micro-benchmark #1: Locality

» In all systems tested shared memory is latency is fixe no caching/prefetching

Intel Compiler, Architecture and Tools Conference - November 2013

OurdBenchmarks!

Micro-benchmark #1: Locality

» Texture memory caching is 32 bytes of size = 4 doublerecision coordinates

Intel Compiler, Architecture and Tools Conference - November 2013

OurdBenchmarks!

Micro-benchmark #1: Locality

» Constant memory has a 2-level hierarchy for 64 and 256 byte segments

Intel Compiler, Architecture and Tools Conference - November 2013

OurdBenchmarks!

Micro-benchmark #1: Locality

> Global memory — CUDA 2.x systems support caching / prefetching

Intel Compiler, Architecture and Tools Conference - November 2013

Micro-benchmark #2: Synchronization

» Examine the effects of varying synchronization granuleﬁty for memory writes

/

» Number of thread changes as well - each thread eerJtes the same kernel:

Sync after Sync after Sync after
1024 writes 312 writes each write

Write arr[0] Write arr[0]

Write arr[1]

Write arr[1]
')/\ Write ar511]
= .
-

Write arr[1023] Write arr{1023] Write arr[1023]

Intel Compiler, Architecture and Tools Conference - November 2013

o,

OurdBenchmarks!

Micro-benchmark #2: Synchronization

» Fine-grained sync increase latency by 163%. 192 threadS increase latency by 13%

Intel Compiler, Architecture and Tools Conference - November 2013

OurdBenchmarks!

Micro-benchmark #2: Synchronization

» Fine-grained sync increase latency by 281%. 192 threadS increase latency by 38%

Intel Compiler, Architecture and Tools Conference - November 2013

OurgBenchmarks

Micro-benchmark #3: Memory Coalescing

» Target: the ability of grouping memory accesses from different threads

> ..And what happens when it’s impossible.

.
o

P
y

» Each thread reads 1K lines starting from }di@lt offset.

4_
/
. "“‘\d—uffsé?:'

Address: 0 1 offset 1K-1 1K 1K+offset

Intel Compiler, Architecture and Tools Conference - November 2013

4

OurdBenchmarks!

Micro-benchmark #3: Memory Coalescing

» Large offset = loss of locality. 192 threads+ Large offset = scheduler competition!

Intel Compiler, Architecture and Tools Conference - November 2013

OurdBenchmarks!

Micro-benchmark #3: Memory Coalescing

» No competition — however, overall latency is larger.

Intel Compiler, Architecture and Tools Conference - November 2013

OurgBenchmarks

Other benchmarks...

Intel Compiler, Architecture and Tools Conference - November 2013

iToday;sjTopics
- JBackground

>
» Our benchmarks

» (Conclusions + Future Work

Intel Compiler, Architecture and Tools Conference - November 2013

» Understanding GPUs performance + power = understanding microarchitecture!
> ... However microarchitecture is usually kept secret.

» Memory access patterns must be takeninder considerations

|. [
{

> Loss of locality, resource competition, syhthronizations —>significant side-effects

> Side-effects differ between GPU platforms (newer is not always better!)

-

|

Intel Compiler, Architecture and Tools Conference - November 2013

» Extend the focused benchmarks to other GPU’s aspects.

» Extend the work to analyze progFﬁms’ behavior and correlate them

) L
] {

with HW characterizations

» Extend the work to other platforﬁés such as Xeon Phi

26

Intel Compiler, Architecture and Tools Conference - November 2013

» Extend the focused benchmarks to other GPU’s aspects.

» Extend the work to analyze progFﬁms’ behavior and correlate them

) L
] {

with HW characterizations

> Extend the work to other platforms such as Xeon Phi

- 27

Intel Compiler, Architecture and Tools Conference - November 2013

