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Bandwidth (in MB/s) for memory copy on two CPU, two GPU, and two 64-bit systems.

• GPU provide significant performance or power efficiency  for parallel workloads

• However, even simple workloads are microarchitecture and platform sensitive

• Why do applications behave the way they do?



• GPGPU Profiling tools: 

- complex and not conclusive

- mainly based on companies’ work (don’t expose  undocumented behavior)

• Academic work

- some works suggest the use of targeted benchmarks

- some target specific structures or aspects 

- many are based on “common knowledge”

Existing tools and work – Industry + Academia:



Goals: 

 Unveil GPU microarchitecture characterizations

 …Including  undocumented behavior!

 Auto-match applications to HW spec +  HW/SW optimizations 





Current work

 We have a series of CUDA benchmarks that explore different NVIDIA cards

 Each micro-benchmark pinpoints a different phenomena

 We focus on the memory system – has a huge impact on performance and power

 Benchmarks executed on 4 different NVIDIA systems



Long term vision…

 We wish to construct an application + HW characteristics database

 Based on this database we would like to construct a matching tool:

1. Given a workload – what type of hardware should be used?

2. Given workload + hardware – what optimizations to apply?





 Common microbenchmarks often target hierarchy (e.g. cache levels)

 Targeting hierarchy adds to the code’s complexity 

 Targeting hierarchy harms portability! (machine dependent code )

 Our micro-benchmarks target behavior, not hierarchy



4 systems tested:



Micro-benchmark #1: Locality

 Explore sizes of cacheline/prefetch using small jumps of varying size



Micro-benchmark #1: Locality
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 In all systems tested shared memory is latency is fixed  no caching/prefetching



Micro-benchmark #1: Locality
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 Texture memory caching is 32 bytes of size = 4  double precision coordinates 



Micro-benchmark #1: Locality
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 Constant memory has a 2-level hierarchy for 64 and 256 byte segments 



Micro-benchmark #1: Locality
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 Global memory – CUDA 2.x systems support caching / prefetching 



Micro-benchmark #2: Synchronization

 Examine the effects of varying synchronization granularity for memory writes

 Number of thread changes as well - each thread executes the same kernel:



Micro-benchmark #2: Synchronization

0

10

20

30

40

50

60

70

80

90

100

1 4 16 64 256 1024

K
er

n
el

 L
at

e
n

cy
 (

u
s)

#Sync instructions

Fermi Quadro 2000

 1 thread  4 threads  32 threads

 64 threads  128 threads  192 threads

 Fine-grained sync increase latency by 163%. 192 threads increase latency by 13%  



Micro-benchmark #2: Synchronization
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 Fine-grained sync increase latency by 281%. 192 threads increase latency by 38%  



Micro-benchmark #3: Memory Coalescing

 Target: the ability of grouping memory accesses from different threads

 …And what happens when it’s impossible.

 Each thread reads 1K lines starting from a different offset.  



Micro-benchmark #3: Memory Coalescing
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 Large offset = loss of locality.  192 threads+ Large offset = scheduler competition!



Micro-benchmark #3: Memory Coalescing
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 No competition – however, overall latency is larger. 



Other benchmarks...





 Understanding GPUs performance + power = understanding microarchitecture!

 ... However microarchitecture  is usually kept secret.

 Memory access patterns must be taken under considerations

 Loss of locality, resource competition , synchronizations significant side-effects

 Side-effects differ between GPU platforms (newer is not always better!)



 Extend the focused benchmarks to other GPU’s aspects.

 Extend the work to analyze programs’ behavior and correlate them 

with HW characterizations

 Extend the work to other platforms such as Xeon Phi
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