
Adi Fuchs, Noam Shalev and Avi Mendelson – Technion , Israel Institute of Technology

This work was supported in part by the Metro450 consortium

Understanding of GPGPU
Performance: Towards a
New Optimization Tool

Adi Fuchs, Noam Shalev and Avi Mendelson – Technion , Israel Institute of Technology

This work was supported in part by the Metro450 consortium

Bandwidth (in MB/s) for memory copy on two CPU, two GPU, and two 64-bit systems.

• GPU provide significant performance or power efficiency for parallel workloads

• However, even simple workloads are microarchitecture and platform sensitive

• Why do applications behave the way they do?

• GPGPU Profiling tools:

- complex and not conclusive

- mainly based on companies’ work (don’t expose undocumented behavior)

• Academic work

- some works suggest the use of targeted benchmarks

- some target specific structures or aspects

- many are based on “common knowledge”

Existing tools and work – Industry + Academia:

Goals:

 Unveil GPU microarchitecture characterizations

 …Including undocumented behavior!

 Auto-match applications to HW spec + HW/SW optimizations

Current work

 We have a series of CUDA benchmarks that explore different NVIDIA cards

 Each micro-benchmark pinpoints a different phenomena

 We focus on the memory system – has a huge impact on performance and power

 Benchmarks executed on 4 different NVIDIA systems

Long term vision…

 We wish to construct an application + HW characteristics database

 Based on this database we would like to construct a matching tool:

1. Given a workload – what type of hardware should be used?

2. Given workload + hardware – what optimizations to apply?

 Common microbenchmarks often target hierarchy (e.g. cache levels)

 Targeting hierarchy adds to the code’s complexity

 Targeting hierarchy harms portability! (machine dependent code)

 Our micro-benchmarks target behavior, not hierarchy

4 systems tested:

Micro-benchmark #1: Locality

 Explore sizes of cacheline/prefetch using small jumps of varying size

Micro-benchmark #1: Locality

0

10

20

30

40

50

60

70

80

90

100

4 16 64 256

K
er

n
el

 L
at

e
n

cy
(u

s)

small jump size (bytes)

Shared Memory

C2070 Quadro2000 GTX680 K20

 In all systems tested shared memory is latency is fixed  no caching/prefetching

Micro-benchmark #1: Locality

0

100

200

300

400

500

600

4 16 64 256

K
er

n
el

 L
at

e
n

cy
(u

s)

small jump size (bytes)

Texture Memory

C2070 Quadro2000 GTX680 K20

 Texture memory caching is 32 bytes of size = 4 double precision coordinates

Micro-benchmark #1: Locality

0

100

200

300

400

500

600

4 16 64 256

K
er

n
el

 L
at

e
n

cy
(u

s)

small jump size (bytes)

Constant Memory

C2070 Quadro2000 GTX680 K20

 Constant memory has a 2-level hierarchy for 64 and 256 byte segments

Micro-benchmark #1: Locality

0

100

200

300

400

500

600

4 16 64 256

K
er

n
el

 L
at

e
n

cy
(u

s)

small jump size (bytes)

Global Memory

C2070 Quadro2000 GTX680 K20

 Global memory – CUDA 2.x systems support caching / prefetching

Micro-benchmark #2: Synchronization

 Examine the effects of varying synchronization granularity for memory writes

 Number of thread changes as well - each thread executes the same kernel:

Micro-benchmark #2: Synchronization

0

10

20

30

40

50

60

70

80

90

100

1 4 16 64 256 1024

K
er

n
el

 L
at

e
n

cy
 (

u
s)

#Sync instructions

Fermi Quadro 2000

 1 thread 4 threads 32 threads

 64 threads 128 threads 192 threads

 Fine-grained sync increase latency by 163%. 192 threads increase latency by 13%

Micro-benchmark #2: Synchronization

0

10

20

30

40

50

60

70

80

90

1 4 16 64 256 1024

K
er

n
el

 L
at

e
n

cy
 (

u
s)

#Sync instructions

K20

 1 thread 4 threads 32 threads

 64 threads 128 threads 192 threads

 Fine-grained sync increase latency by 281%. 192 threads increase latency by 38%

Micro-benchmark #3: Memory Coalescing

 Target: the ability of grouping memory accesses from different threads

 …And what happens when it’s impossible.

 Each thread reads 1K lines starting from a different offset.

Micro-benchmark #3: Memory Coalescing

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 16 32 64 128 256

A
ve

ra
ge

 r
ea

d
 la

te
n

cy
 (

u
s)

#Threads

Fermi Quadro2000
4bytes 8bytes 16bytes
32bytes 64bytes 128bytes
256bytes 512bytes 1024bytes

 Large offset = loss of locality. 192 threads+ Large offset = scheduler competition!

Micro-benchmark #3: Memory Coalescing

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 16 32 64 128 256

A
ve

ra
ge

 r
ea

d
 la

te
n

cy
 (

u
s)

#Threads

Tesla K20
4bytes 8bytes 16bytes
32bytes 64bytes 128bytes
256bytes 512bytes 1024bytes

 No competition – however, overall latency is larger.

Other benchmarks...

 Understanding GPUs performance + power = understanding microarchitecture!

 ... However microarchitecture is usually kept secret.

 Memory access patterns must be taken under considerations

 Loss of locality, resource competition , synchronizations significant side-effects

 Side-effects differ between GPU platforms (newer is not always better!)

 Extend the focused benchmarks to other GPU’s aspects.

 Extend the work to analyze programs’ behavior and correlate them

with HW characterizations

 Extend the work to other platforms such as Xeon Phi

 Extend the focused benchmarks to other GPU’s aspects.

 Extend the work to analyze programs’ behavior and correlate them

with HW characterizations

 Extend the work to other platforms such as Xeon Phi

