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* GPU provide significant performance or power efficiency for parallel workloads

* However, even simple workloads are microarchitecture and platform sensitive
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« Why do applications behave the way they do?
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Existing tools and work — Industry + Academia:

 GPGPU Profiling tools:

- complex and not conclusive

- mainly based on companies’ work (don’t ¢ )0se undocumented behavior)

e Academic work

v

- some works suggest the use of targeted be marks
- some target specific structures or aspe

- many are based on “common knowledge”
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Goals:

> Unveil GPU microarchitecture characterizations
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Current work

» We have a series of CUDA benchmarks that explore different NVIDIA cards

» Each micro-benchmark pinpoints a different phenomena

» We focus on the memory system — has a huge impact on performance and power

» Benchmarks executed on 4 different NVIDIA systems
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Long term vision...

» We wish to construct an application + HW characteristics database

» Based on this database we would like to construct a matching tool:

1. Given a workload — what type of hardware should be used?

2. Given workload + hardware — what optimizations to apply?
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» Common microbenchmarks often target hierarchy (e.g. cache levels)

» Targeting hierarchy adds to the code’s complexity

”~

_
» Targeting hierarchy harms pgrtability! (machine dependent code )

e

> Our micro-benchmarks target behavior, not hierarchy
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4 systems tested:

C2070

Quadro 2000

GTXa680

Device Name

Tesla C2070

Quadro 2000

GeForce GTX 680

Tesla K20m

GPU Architecture Tesla Fermi Kepler Tesla
CUDA Driver
/ Runtime Version 50/5.0 50/5.0 50/5.0 50/5.0
CUDA Capability 2.0 21 3.0 15
Global memory size 6144 MBytes 1024 MBytes 4096 MBytes 4300 MBvtes
Multiprocessors 14 4 8 13
CUDA Cores/MP 32 48 192 192
Total number of cores 448 192 1336 2496
GPU Clock rate 1.15 GHz 1.25 GHz 1.06 GHz 0.71GHz
Memory Clock rate 1.5 GHz 1.3 GHz 3 GHz 2.6 GHz
Memory Bus Width 384-bit 128-bit 256-bit 320-bit
L2 Cache Size 786432 bytes 262144 bytes 524288 bytes 1310720 bytes
Constant memory size 65536 bytes 65536 bytes 65536 bytes 65536 bytes
Shared memory per block 49152 bytes 49152 bytes 49152 bytes 49152 bytes
Max registers per block 32768 32768 65536 65536
Warp size 32 32 32 32
Max threads / MP 1536 1536 2048 2048
Threads per block 1024 1024 1024 1024
3.2 0-32 3.2.0-32 3.2 0-38- 3.2 0-38-
Linux kernel version -generic -generic generic generic
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Micro-benchmark #1: Locality

> Explore sizes of cacheline/prefetch using small jumps of varying size
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OurdBenchmarks!

Micro-benchmark #1: Locality

» In all systems tested shared memory is latency is fixe no caching/prefetching
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OurdBenchmarks!

Micro-benchmark #1: Locality

» Texture memory caching is 32 bytes of size = 4 doublerecision coordinates
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OurdBenchmarks!

Micro-benchmark #1: Locality

» Constant memory has a 2-level hierarchy for 64 and 256 byte segments
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OurdBenchmarks!

Micro-benchmark #1: Locality

> Global memory — CUDA 2.x systems support caching / prefetching
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Micro-benchmark #2: Synchronization

» Examine the effects of varying synchronization granuleﬁty for memory writes

/

» Number of thread changes as well - each thread eerJtes the same kernel:
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OurdBenchmarks!

Micro-benchmark #2: Synchronization

» Fine-grained sync increase latency by 163%. 192 threadS increase latency by 13%
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OurdBenchmarks!

Micro-benchmark #2: Synchronization

» Fine-grained sync increase latency by 281%. 192 threadS increase latency by 38%

Intel Compiler, Architecture and Tools Conference - November 2013



OurgBenchmarks

Micro-benchmark #3: Memory Coalescing

» Target: the ability of grouping memory accesses from different threads

> ..And what happens when it’s impossible.

.
o

P
y

» Each thread reads 1K lines starting from }di@lt offset.
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OurdBenchmarks!

Micro-benchmark #3: Memory Coalescing

» Large offset = loss of locality. 192 threads+ Large offset = scheduler competition!
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OurdBenchmarks!

Micro-benchmark #3: Memory Coalescing

» No competition — however, overall latency is larger.
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Other benchmarks...
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» Understanding GPUs performance + power = understanding microarchitecture!
> ... However microarchitecture is usually kept secret.

» Memory access patterns must be takeninder considerations
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> Loss of locality, resource competition, syhthronizations —>significant side-effects

> Side-effects differ between GPU platforms (newer is not always better!)
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» Extend the focused benchmarks to other GPU’s aspects.

» Extend the work to analyze progFﬁms’ behavior and correlate them
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with HW characterizations

» Extend the work to other platforﬁés such as Xeon Phi
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» Extend the focused benchmarks to other GPU’s aspects.
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> Extend the work to other platforms such as Xeon Phi
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