
GPGPU Memory Characterization:

A Cross-Platform Quantitative Study

Adi Fuchs

Noam Shalev

Avi Mendelson

Technion Computer Engineering Center, Technion IIT, Haifa, Israel

{adi,noams,avi.mendelson}@technion.ac.il

Abstract

General-purpose GPUs (GPGPUs) hold the potential of a high

computational throughput – supporting the execution of many

concurrent tasks. The amount of computational intensity is enabled

by the abundance of simple, low power execution units in a typical

GPU microarchitecture. These systems trade performance features

that consume much power, such as out-of-order execution, with new

SW/HW interfaces. Thus, GPGPUs highly depend on efficient

utilization of their microarchitecture that is enabled by software

optimizations that should be carried out carefully. This is not a trivial

task, since the optimizations that are done for one GPGPU

architecture may not fit other systems. Unfortunately, many of the

dominating characteristics of GPGPU microarchitectures are not

publically available, as manufacturers tend to keep them under strict

confidentiality. The purpose of this work is to suggest a set of micro-

benchmarks that aims to reveal the characteristics of different

graphics cards, in respect to features that may impact the

optimization of GPGPU applications. As a first step in this direction,

this paper focuses on memory architecture of different NVIDIA

cards. The tools and results presented in this work can be used either

as a baseline for comparison between different generations of GPU

cards and/or as a guideline for GPU programmers optimize their

future applications. In order to explore the new proposed tools on

different platforms, the kernels were executed under four different

GPU systems using the CUDA programming environment. This

work highlights several insights that are often oblivious to

programmers and can significantly affect GPU performance: in all

systems tested, the overhead of fine grained synchronization for

memory bound workloads resulted in a slowdown of over 260%; the

inability to coalesce concurrent memory reads in massively parallel

workloads caused a slowdown of over 264% and massive register

spilling resulted a slowdown of more than 1140%. Another

interesting insight which was noticed is that for some of the tests

performed, newer GPU systems did not necessarily perform better

than their predecessors.

1. Introduction

During the past decades computing industry has dealt with many

challenges posed by the ever growing demand for computation.

Power constraints have hindered the progress in single task

performance [1] forcing a shift towards parallel hardware

architectures, such as multi-core CPU and GPU architectures, that

present a high computation potential without an increase in processor

frequency rates. In order to exploit the benefits of these architectures,

a shift in the commonly used software models was needed as well,

towards parallel programming paradigms - as they enable the

programmers to express computationally independent segments

within a program as parallel tasks, which can be concurrently

executed on different computation machines. The parallel

computation era induces a growing dependency between hardware

and software, as programmers and programming library developers

should be more aware of the underlying hardware behavior, in order

to efficiently utilize it. When comparing multicore CPU architectures

to GPU architectures, the latter consist of a larger number of simpler

processing elements, highly parallel memory architecture and mainly

were used for graphic computations. As general purpose tasks

become increasingly parallel, some of the recent programming

environments, such as CUDA [2] and OpenCL [3] enable the

execution of general purpose kernels on GPUs (often referred to as:

"GPGPU"). Since GPGPU programs target an efficient utilization of

GPU architecture, they usually consist of many concurrently

executing threads, which strain the various architectural elements and

the memory in specific, making these programs highly sensitive to

the underlying micro-architecture and the amount of collaboration

between hardware and software. In this work a set of micro-

benchmarks was developed to expose some of the various behaviors

in the GPGPU memory hierarchy – workloads explore register file

spilling, the GPUs sensitivity to synchronization granularity and the

effects of spatial memory locality.

The main contributions of this work are:

1. A set of structurally independent kernels which unravel some of

the GPU's micro-architecture attributes.

2. A quantitative study of four different commercial NVIDIA GPU

platforms, from 2 major development generations - using the

developed kernels as baseline for behavioral comparison.

The testing process unveiled several issues, such as caching issues in

the new GPU generations for global memory and unexpected

overhead caused by in-thread-block synchronization primitives. In

some cases, overhead related to enforcing tight synchronization for

memory bound workloads is significant and result in a slowdown of

over 260%. This raises the question on the use of automated

synchronization mechanisms and their costs – such costs impede

potential performance of GPU programs, therefore fit a programming

model for which synchronization must be done explicitly by the

programmer. This reveals some other important aspects of NVIDIA’s

GPU characterization such as how efficient is the implementation of

register spilling; this paper will report that under some conditions, it

may cause a performance degradation of up to an order of magnitude.

2. Related Work

Several studies have dealt with GPU micro-architecture behavior;

however, this work is the first to combine a quantitative study of four

commercial GPU systems with benchmarks that are structurally

independent, making them micro-architecturally neutral, this approach

allows the benchmarks created to run on other GPU systems and in the

future to be easily implemented on other GPGPU programming

languages (e.g OpenCL). The work of Goswami et al. [4] has

examined the behavior of a GPU environment for complex workloads

(K-means, PCA etc.) to test different aspects, for that they have used a

simulation environment (GPGPU-sim) and measured the runtimes

under different configurations. Lashgar and Baniasadi [5] tested the

implications of various control flow mechanisms on GPU memory

behavior under GPGPU-sim as well, they have used CUDA to run a

set of known benchmarks (NN, Matrix Multiplication etc.). Unlike the

above mentioned papers, this work targets the pinpointing of specific

behavioral patterns based on the results of synthetic benchmarks that

were created and executed on real GPU systems. Wong et al [6]

created a set of micro-benchmarks targeting various aspects of the

NVIDIA GT200 GPU microarchitecture e.g. cache structure, branch

divergence, clocking domains etc. The kernels presented in their work

targeted specific structures in the micro-architecture (for example

cache set structure), while this work contains generic kernels that do

not have any structural assumptions (e.g. cache mapping, TPC/SM

structure) on the tested micro-architectures, the affecting parameters

were part of the programming model (e.g. number of threads, number

of synchronization instructions) thus enabling a more extensive study:

the kernels' code was compiled and executed in the exact same

manner on the 4 systems tested without any adaptations, enabling the
most reliable methodology for comparing various GPU systems.

3. Evaluation

3.1 Platforms

All systems run Ubuntu 12.04 on x86_64 architecture, the following

tables contain the hardware configurations extracted using the

cudaGetDeviceProperties() runtime function.

Table 1. CUDA Capability 2.x machines

 C2070 Quadro 2000

Device Name Tesla C2070 Quadro 2000

GPU Architecture Tesla Fermi

CUDA Driver

/ Runtime Version 5.0 /5.0 5.0 /5.0

CUDA Capability 2.0 2.1

Global memory size 6144 MBytes 1024 MBytes

Multiprocessors 14 4

CUDA Cores/MP 32 48

Total number of cores 448 192

GPU Clock rate 1.15 GHz 1.25 GHz

Memory Clock rate 1.5 GHz 1.3 GHz

Memory Bus Width 384-bit 128-bit

L2 Cache Size 786432 bytes 262144 bytes

Constant memory size 65536 bytes 65536 bytes

Shared memory per block 49152 bytes 49152 bytes

Max registers per block 32768 32768

Warp size 32 32

Max threads / MP 1536 1536

Threads per block 1024 1024

Linux kernel version

3.2.0-32

-generic

3.2.0-32

-generic

 Table 2. CUDA Capability 3.x machines

 GTX680 K20

Device Name GeForce GTX 680 Tesla K20m

GPU Architecture Kepler Tesla

CUDA Driver

/ Runtime Version 5.0 /5.0 5.0 /5.0

CUDA Capability 3.0 3.5

Global memory size 4096 MBytes 4800 MBytes

Multiprocessors 8 13

CUDA Cores/MP 192 192

Total number of cores 1536 2496

GPU Clock rate 1.06 GHz 0.71GHz

Memory Clock rate 3 GHz 2.6 GHz

Memory Bus Width 256-bit 320-bit

L2 Cache Size 524288 bytes 1310720 bytes

Constant memory size 65536 bytes 65536 bytes

Shared memory per

block 49152 bytes 49152 bytes

Max registers per block 65536 65536

Warp size 32 32

Max threads / MP 2048 2048

Threads per block 1024 1024

Linux kernel version 3.2.0-38-generic 3.2.0-38-generic

3.2 Benchmarks

In order to get the best performance out of NVIDIA’s cards, this work

presents a new Micro-benchmark suite, using the CUDA

programming environment – the target of these benchmarks was to

measure several aspects in cross-platform micro-architecture:

structural characteristics such as cache line or pre-fetch sizes for the

various memory types, and behavioral characteristics such as the

effects of memory coalescing, cache misses, registers file spilling (a

scenario in which a kernel's variables cannot fit in the register file and

are stored in the memory) and by that provide a rough estimation to

the performance variance between a highly tuned GPU kernel and an

highly unbalanced kernel. For example, many adjacent memory reads

from different threads can be grouped by the GPU memory scheduler

to the same transaction by memory coalescing, while concurrent reads

to distinct memory areas cannot be grouped and are performed in a

sequential manner – resulting in severe performance degradation of

almost an order of magnitude merely due to bad spatial locality, which
is sometimes oblivious to the GPU programmer.

3.3 Methodology

The notation for benchmark performance in this work is derived from

the latency perceived by the threads running the kernels, using

CUDA's clock() function. Meaning, all kernels are structured in the

following manner:

<kernel definitions>

start=clock();

<kernel execution code>

end=clock();

return (start-end);

The results extracted from the kernels were scaled from number of

clocks to the actual latency according to the GPU clock rates given in

Table 1 and in Table 2. The performance notation in this work was

derived from perceived latencies; if needed, the throughput can be

derived as well by combining the perceived latencies with the number
of running threads.

All kernels were executed under CUDA runtime version 5.0, compiled

using "-O3" optimization flag ('-Olimit=118245' was sufficient for the
kernels containing larger procedures).

3.4 Main Results

The tests conducted aim to both unveil the implications of

programming patterns on the performance of the GPU memory

architecture and compare memory architecture related features on

different NVIDIA CUDA generations. In specific, these tests highlight

4 main aspects in the memory hierarchy:

1) The prefetch mechanism of the GPU, which translates into the

ability of the GPU to exploit spatial memory locality, using its cache
mechanisms.

2) The overhead of global memory synchronization granularity in
memory intense workloads.

3) The contribution of memory coalescing to performance and the

implications on performance for cases in which coalescing cannot be
performed.

4) The implications of the register spilling phenomenon that occurs in
cases for which local variables cannot fit in the register file.

3.4.1 Exploring locality different types of memory

The purpose of this kernel is to discover the sizes and latency

implications of caching mechanisms, if present. This is done by

examining the effect of 'cold-start' misses – meaning, cache misses

resulted from accesses to memory regions never before read. For that,

kernels allocate a large array and perform 1024 sequential and

dependent reads, divided to 512 couples. Each couple consists of

"small jump, large jump" memory accesses: "large jump" is a fixed

large distance for which no reasonable caching mechanism is designed

to perform a pre-fetch (we have used a fixed size of 4KB) the size of

"small jumps" varies between 1 and 512 bytes at distinct kernel

executions. Note that this access pattern also prevents from stride

detection mechanisms, if exist, to perform a pre-fetch. Benchmarks

execute a single kernel at a time since the purpose of this kernel is to
discover variance in latency resulted from a change in locality.

Small

jump=s

...

Large Jump=4K-s

...

Small

jump=s

...

Large Jump=4K-s

...
 0 1 s 4K 4K+1 4K+s Address:

Figure 1. The memory access pattern for small jump size = S.

To more accurately formulate the expected kernel results, the

following functions were defined:

1

1

1 ' '
(,)

0

(,) , 1 ,
n

j

level n cacheline sizeis larger than s
L s n

otherwise

H s n L s n L s j

(1)

𝐿(𝑠, 𝑛) returns 1 if the line size of level 𝑛 of the cache is larger than 𝑠.

Therefore, 𝐻(𝑠, 𝑛) shall result in 1 if the line size of level 𝑛 of the

cache is larger than 𝑠, but all of the cache levels which are closer to

the processor, down to L1, have a smaller cache line size than 𝑠.

Given 𝑁 cache levels, and the access time for each cache level 𝑘,

𝑇(𝑙𝑒𝑣𝑒𝑙 𝑘), the expected kernel latency for "small jump" stride of size

𝑠 should be the following:

1

512 ,
N

k
long jumps

short jumps

T s T MemoryAccess H s k T level k

 (2)

Note that 𝐻(𝑠, 𝑘) returns non-zero result only for one value of 𝑘. Also

mark that after each long jump, a memory access will be needed.

Thus, we get that the expected time for the kernel to execute consists

of 512 memory accesses (for the 512 long jumps) and 512 accesses to

the first level of the cache (or memory) which contains the address of

our last access plus our stride 𝑠. In order to refrain from further

complicating formula (2) the assumption for the latency in level 𝑘,

𝑇(𝑙𝑒𝑣𝑒𝑙 𝑘), is that it includes the latencies of the seek in lower levels.

The kernel was executed for 4 different memory types supported by

the CUDA runtime environment: the global memory, the constant
memory, the shared memory and the texture memory.

Shared memory:

In current GPU systems the shared memory is an on-chip memory,

making it potentially faster than other memory types. It is allocated

per thread block, so all threads in the block have access to the same

shared memory. Since the shared memory is relatively small this
specific kernel contained a relatively small array of ~48KB.

Figure 2.Execution results for shared memory with varied stride sizes

As one can infer from figure 2 – for all systems tested, the shared

memory has a fixed latency – this implies that shared memory is not

cached (though it is often used as a user managed cache on software

level). Though original kernels' results were in number of clocks -

when combining the perceived latency with the clock rates in Table 1

and Table 2, it appears that shared memory is around 70% slower for
the new TeslaK20 CUDA system (generation 3.5).

0

20

40

60

80

100

4 16 64 256

K
e

rn
e

l L
at

e
n

cy
(u

s)

small jump size (bytes)

Shared Memory
C2070
Quadro2000
GTX680
K20

Texture memory:

Unlike other memory types, Texture memory space is an abstraction

provided by the GPGPU programming environment, rather than a

actual memory mapped to a physical device, as described in the

CUDA programming guide [8] it is optimized for multidimensional
accesses and can contain up to 4 coordinates.

Figure 3.Execution results for texture memory with varied stride sizes

As seen in figure 3 - for all systems tested, texture memory latency

increased for a step size of 32 bytes, indicating that texture memory

caches a line size of 32 bytes in the first level; this is likely since

textures in CUDA consist of 4 dimensional coordinates which can be
either long or double precisions (8 bytes each).

Constant memory:

The constant memory is an on-card memory, containing read-only

data (i.e. variables and arrays annotated by the reserved 'constant' key

word in CUDA) – the constant memory is accessible to all threads and
blocks within a grid.

Figure 4.Execution results for constant memory with varied stride

sizes

For all systems tested, Latency change for constant memory in 2

distinctive points - in 64 bytes and 256 bytes, implying that constant

memory has 2 levels of cache – the first of 64 byte line size, the

second level is 256 bytes. Previous studies exploring the GT200 GPU

system [7] reveal that GT200 has an L2 cache line of size 256 bytes –

if this is the case here, it implies that upon access the GPU systems

both loads the corresponding 64 bytes line into the L1 cache and

initiate a pre-fetch transaction to request the corresponding 256 bytes

line to the L2 cache.

Global memory:

Global memory stores global variables and variables and it can be

used both by the GPU and the host (after proper mapping)

Figure 5. Execution results for global memory with varied stride sizes

As one can infer from figure 5, the global memory behaves

differently for the previous generation CUDA systems (2.x). For the

previous generation systems, the latency is increased in step sizes of

64 bytes which indicate a first level cache line size of 64 bytes. For

newer generation systems no latency increase can be seen in the

graphs, indicating the absence of caching mechanism for global

memory. A possible reason for the lack of global memory caching in

3.x devices is due to high memory clock rates comparing to their

predecessors, as mentioned in tables 1+2 – this suggests that the GPU

manufacturers for CUDA devices with generations favored higher

frequency memories over caching mechanisms.

3.4.2 The effects of local thread synchronization

This kernel explores the overhead caused by synchronizing threads for

a memory bound workload, consisting solely of memory writes. The

kernel performs 1024 memory accesses and using CUDA's

__syncthreads() to synchronize threads belonging to the same blocks.

The parameter being changed here is N = number of __syncthreads()

instructions, as N increased – so is the frequency of synchronization

instructions, starting from N=1 (__syncthreads() is called only at the

end of all 1024 accesses) and reaching N=1024 (__syncthreads() is

called after every memory access) - given a general N the kernel
execution code is structured in the following manner:

"1024 Memory writes, N syncs" kernel execution code

𝑎𝑟𝑟[0] = 𝑝 + +;
𝑎𝑟𝑟[1] = 𝑝 + +;
…

𝑎𝑟𝑟[(1024/𝑁) − 1] = 𝑝 + +;
__𝑠𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠();
𝑎𝑟𝑟[1024/𝑁] = 𝑝 + +;
𝑎𝑟𝑟[(1024/𝑁) + 1] = 𝑝 + +;
…

𝑎𝑟𝑟[(2 ∗ 1024/𝑁) − 1] = 𝑝 + +;
__𝑠𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠();

0

100

200

300

400

500

600

4 16 64 256

K
e

rn
e

l L
at

e
n

cy
(u

s)

small jump size (bytes)

Texture Memory

C2070
Quadro2000
GTX680
K20

0

100

200

300

400

500

600

4 16 64 256

K
e

rn
e

l L
at

e
n

cy
(u

s)

small jump size (bytes)

Constant Memory
C2070
Quadro2000
GTX680
K20

0

100

200

300

400

500

600

4 16 64 256

K
e

rn
e

l L
at

e
n

cy
(u

s)

small jump size (bytes)

Global Memory

C2070
Quadro2000
GTX680
K20

…

As N increases, the overhead of memory synchronizations increase

accordingly, in a sense one can perceive N=1024 as fine grained

synchronization (synchronization performed after every memory

access) performed for benchmarks with high memory traffic. The

benchmarks were executed several times - both for varied number of

synchronizations and for varied number of threads. All threads

execute the abovementioned kernel code on the same array, mapped to

the global memory; by enforcing such workload with varied

synchronization frequency this benchmark targets a quantification of

the overhead caused by global memory synchronization in a memory

bound workload

CUDA 2.x systems:

Figure 6. Latency of 1024 global memory writes w.r.t the frequency
of synchronization instructions for Tesla C2070.

Figure 7. Latency of 1024 global memory writes w.r.t the frequency

of synchronization instructions for Fermi Quadro 2000.

CUDA 3.x systems:

Figure 8. Latency of 1024 global memory writes w.r.t the frequency
of synchronization instructions for Kepler GTX680.

Figure 9. Latency of 1024 global memory writes w.r.t the frequency
of synchronization instructions for Tesla K20.

When looking at figures 6-9 one can deduct that a change in the

number of concurrent threads increases latency by a maximum of

13% for Fermi Quadro 2000, 11% for Tesla C2060, 38% for Tesla

K20 and 6% for Kepler GTX 680, while the increase in the frequency

of synchronization instructions (up to one for each memory write)

increases latency by 163% for Fermi Quadro 2000, 178% for Tesla

C2060, 223% for Kepler GTX 680 and 281% for Tesla K20. This

clearly demonstrates the magnitude of overhead resulted from fine

grained synchronization in high memory bound benchmarks, harming

both latency and throughput thus impeding the gain from a high

number of threads. It can also be inferred that Kepler GTX680

demonstrated the best performance, while the Tesla K20 GPU, which

is a more advanced device, suffered from some fluctuations and

performed worse.

0

10

20

30

40

50

60

70

80

90

1 4 16 64 256 1024

K
e

rn
e

l L
at

e
n

cy
 (

u
s)

#Sync instructions

Tesla C2070

 1 thread
 4 threads
 32 threads
 64 threads
 128 threads
 192 threads

0

10

20

30

40

50

60

70

80

90

100

1 4 16 64 256 1024

K
e

rn
e

l L
at

e
n

cy
 (

u
s)

#Sync instructions

Fermi Quadro 2000

 1 thread

 4 threads

 32 threads

 64 threads

 128 threads

 192 threads

0

10

20

30

40

50

60

1 4 16 64 256 1024

K
e

rn
e

l L
at

e
n

cy
 (

u
s)

#Sync instructions

GTX 680

 1 thread
 4 threads
 32 threads
 64 threads
 128 threads
 192 threads

0

10

20

30

40

50

60

70

80

90

1 4 16 64 256 1024

K
e

rn
e

l L
at

e
n

cy
 (

u
s)

#Sync instructions

K20

 1 thread
 4 threads
 32 threads
 64 threads
 128 threads
 192 threads

3.4.3 The effects of memory coalescing

In order to examine the behavior under various concurrent global

memory access patterns, threads executing this kernel invoke a

sequence of 1024 read instructions from adjacent addresses, each

thread starts from a different offset – by changing the number of

threads and the size of the offset, this micro-benchmarks simulates

varying stress on the memory scheduler, as well as examining the size
of the coalescing window.

"1024 reads + varied offset" kernel execution code:

start = thread_id*offset;

for (i =0; i < 1024; i++) read(array[start+i])

...

 0 1 offset 1K-1 1K 1K+offset Address:

Thread 0

Thread 1

Thread2

offset

offset

Figure 10. Memory coalescing benchmark flow for 3 threads

The cross-thread offset was changed from 4 bytes (high adjacency

between threads, the memory scheduler can coalesce several threads

reads) to 1KB (all threads read from distinct memory areas)

Tesla C2070+ Fermi Quadro 2000:

Figure 11. 1024 consecutive memory with varied threads staring

points w.r.t number of threads for Fermi Quadro 2000

Figure 12. 1024 consecutive memory with varied threads staring
points w.r.t number of threads for Tesla C2070

CUDA 3.x systems:

Figure 13. 1024 consecutive memory with varied threads staring
points w.r.t number of threads for Kepler GTX 680

Figure 14. 1024 consecutive memory with varied threads staring
points w.r.t number of threads for Tesla K20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 4 16 64 256

A
ve

ra
ge

 r
e

ad
 la

te
n

cy
 (

u
s)

#Threads

Fermi Quadro2000

4bytes

8bytes

16bytes

32bytes

64bytes

128bytes

256bytes

512bytes

1024bytes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 4 16 64 256

A
ve

ra
ge

 r
e

ad
 la

te
n

cy
 (

u
s)

#Threads

Tesla C2070

4bytes

8bytes

16bytes

32bytes

64bytes

128bytes

256bytes

512bytes

1024bytes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 4 16 64 256

A
ve

ra
ge

 r
ea

d
 la

te
n

cy
 (

u
s)

#Threads

Kepler GTX680
4bytes

8bytes

16bytes

32bytes

64bytes

128bytes

256bytes

512bytes

1024bytes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 4 16 64 256

A
ve

ra
ge

 r
e

ad
 la

te
n

cy
 (

u
s)

#Threads

Tesla K20
4bytes

8bytes

16bytes

32bytes

64bytes

128bytes

256bytes

512bytes

1024bytes

The issues that can be inferred from the above figures are as follows:

1. Latency increases as a function of the number of threads – since

not all memory transactions that are invoked concurrently can be

executed concurrently via coalescing.

2. The latency increases as the offset increase – a larger offset

reduces the spatial locality between threads, therefore the ability to

coalesce their memory transactions. The overhead of high offset

combined with many concurrently executing threads was 898% for

the C2070 system, 770% for the Fermi Quadro 2000 system, 443%

for the Kepler GTX680 system and 263% for the Tesla K20 system.

3. The increase in latency plateaus for 16 threads in both 2.x systems.

The probable reason is caching – since all threads perform serial

reads, as number of threads increase so is the number of lines

concurrently loaded to the global memory cache (therefore threads

can use data pre-fetches earlier by other threads). An additional

increase in latency is spotted starting 128 threads for both systems,

for offsets larger than 32 bytes. The reason for that is a global cache

fill-up, which is caused by the increasing of both the offset size and

the number of threads, which together enlarge the effective working

set, crossing the maximal cache set capacity. The loss of locality

causes performance degradation of up to 650% in both systems

(comparing to the executions with 4 bytes strides).

4. The increase in latency plateaus for 32 threads in 3.x systems and

in addition, overall latency is higher than the latency of 2.x systems –

the reason for that probably also lies in the absence of cache

mechanism for 3.x systems: without the ability to coalesce reads, and

without any cache structure, 3.x systems perform worse than their 2.x

counterparts, under memory bound workloads and no ability to

coalesce the accesses to the memory.

3.4.4 The effects of register spilling

When a program has more live variables than the machine has

registers, some variables are "spilled" from the register file into the

memory. The purpose of this benchmark is to quantify the effects of

register spilling, by changing the number of long variables defined in

the kernel. Since too many variables cannot fit in the register file at a

given time, they shall be stored in the memory that will be used as an

extension to the register file. In order to prevent the compiler from

optimizing the code and group the variables, the variables are loaded

and stored in a random order, thus creating a dependency tree which is

too complex to be resolved for a large enough number of variables.

Below is the pseudo code for the benchmark kernel, for which X
represents the number of variables.

Kernel definition code:
<define X long variables initialized to random values >

Long v;

kernel execution code:

𝐷𝑂 4096:
𝑣 += 𝑥𝑖; /∗ (𝑥𝑖 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) ∗/

𝑥𝑘 += 𝑣; /∗ (𝑥𝑘 𝑖𝑠 𝑎 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) ∗/

CUDA 2.x systems:

Figure 15. 4096 reads and writes with varied number of long

variables w.r.t number of threads for Fermi Quadro 2000

Figure 16. 4096 reads and writes with varied number of long
variables w.r.t number of threads for Tesla C2070

0

500

1000

1500

2000

2500

3000

3500

4000

1 4 16 64 256

K
e

rn
e

l L
at

e
n

cy
(u

s)

Threads

Fermi Quadro 2000

1vars 4vars 32vars

128vars 512vars 1024vars

2048vars

0

500

1000

1500

2000

2500

3000

3500

4000

1 4 16 64 256

K
e

rn
e

l L
at

e
n

cy
(u

s)

Threads

Tesla C2070

1vars 4vars 64vars

128vars 512vars 1024vars

2048vars

CUDA 3.x systems:

Figure 17. 4096 reads and writes with varied number of long

variables w.r.t number of threads for Kepler GTX 680

Figure 18. 4096 reads and writes with varied number of long

variables w.r.t number of threads for Tesla K20

When examining the above results, some trends can be extracted

from the figures above:

1. For all systems, the latency has been increased for benchmarks

with large number of variables – the phenomenon was even more

significant in cases for which number of threads was more than 32.

When re-examining tables 1+2, there are 32 threads per warp. This

indicates that the combination of multiple warps with large number

of variables stresses the register file.

2. For all systems except the K20, the significant increase in latency

started when the number of variables crossed 64, regardless of the

number of threads - implying that most systems support a register file

that is able to store 64 user variables (512B of storage) per thread.

For the TeslaK20 system, the significant increase started for 512

bytes – this suggests that the K20 allocates for larger storage for

variables than its predecessors (although table 2 states both GTX 680

and K20 has the same register file size).

3. For 32 threads and less, the increase in the number of concurrently

running threads does not significantly affect performance for a small

enough number of variables. Thus, the dominating factor for

performance is the number of variables (and registers) used -

implying that all systems allocate per-thread registers to store

variables. For more than 32 threads, the dominating factor was still

the number of variables but an additional increase in latency is seen

as number of threads increase, indicating an overhead of a possible

arbitration mechanism between executing warps.

4. When examining single thread performance, one can notice that

for 2048 long variables (total size of 16KB), there is a significant

slowdown of about 1140%. As shown in Table 1 and Table 2, this

amount of data can easily fit in standard cache memories. However,

as it appears in the figures, the considerable slowdown caused by the

register spilling implies that all of the GPU systems that were tested

do not cache the spilled variables, but just save them in another

memory (slower than the cache) instead.

4. Conclusions

In this work several GPGPU benchmarks were written in the CUDA

programming environment. The target was to provide a way for

pinpoint the strengths and pitfalls in current commercial GPU

systems with an emphasis on the memory hierarchy – these

benchmarks are structurally independent, as there were no

assumptions on any internal hardware structures or cache mapping

schemes. This made it natural for the benchmarks to be executed on

multiple GPU systems and motivated the cross-platform comparison

made in this work, given 4 different NVIDIA GPU systems. The

structural independence approach also made the benchmarks code

highly robust, as it can be easily re-written and executed under other

programming languages and to be tested on different GPU systems.

In spite of structural independence, combining with the information

available in GPU specs these benchmarks unveiled some strengths

and pitfalls that are the results of internal GPU structure.

Some of the results that were found - although fit one’s intuition,

were not yet quantified by previous studies:

1. The overhead of fine grained memory synchronization for threads

belonging to the same block has a significant effect on kernel latency

(therefore can affect overall utilization and throughput) - the

slowdown measured was over 260% while an increase in number of

threads results in a slowdown of at most 138% - one can deduct from

these findings that the cost of fine grained synchronization can

impede future progress in GPU performance, therefore

synchronization should not be enforce automatically by hardware or

software, but rather handled explicitly by GPU programmers.

0

500

1000

1500

2000

2500

3000

3500

4000

1 4 16 64 256

K
e

rn
e

l L
at

e
n

cy
(u

s)

Threads

Kepler GTX680

1vars 4vars 32vars

128vars 512vars 1024vars

2048vars

0

500

1000

1500

2000

2500

3000

3500

4000

1 4 16 64 256

K
e

rn
e

l L
at

e
n

cy
(u

s)

Threads

Tesla K20

1vars 4vars 32vars

128vars 512vars 1024vars

2048vars

2. Not all memory types supported by the GPGPU programming

environment perform the same, as they can be stored on different

memory elements and implement different caching mechanisms.

Moreover, caching mechanisms for the same memory type might not

be implemented in some systems while they are implemented in other

systems. (Such as the case of global memory caching, which is

implemented in 2.x systems, but not in 3.x).

3. The cost of registers spilling is not dominated by the number of

threads – suggesting a per-thread register allocation policy.

Other results found in this works were somewhat counter intuitive:

1. The inability to coalesce concurrently executing global memory

transactions has a significant effect as well. In the benchmarks, each

thread accessed data in a locally sequential manner, reading a series

of consecutive addresses from a single array. In cases where

concurrently executing inter-thread accesses were too distant they

interfered with execution, resulting in a slowdown of over 264%.This

has implications on the way GPU programs are written: although

each thread has a good spatial locality when executed independently,

poor inter-thread locality (i.e. concurrently executing threads access

distant memory regions) can result an unexpected performance

bottleneck due to inefficient memory scheduling.

2. The newest GPU system tested, the Tesla K20, did not achieve the

best results in most benchmarks: (i) the lack of caching mechanism

for the global memory in CUDA 3.x systems caused the inability of

memory coalescing to appear for a smaller number of threads than

2.x systems (ii) The K20 also suffered from the most significant

performance loss due to fine grained global memory synchronization

(iii) the average access time to both shared and global memories was

high. These findings emphasize the importance of regression in

future GPU systems, as some micro-architectural elements of modern

GPU systems tend to perform worse than their predecessors.

3. The cost of register spilling is surprisingly high as it can reach an

order of magnitude in performance loss – even though the overall

number of storage needed by the benchmarks was relatively small (at

most 16KB per thread). This suggests that the register spilling caused

by the benchmarks was poorly handled, perhaps due to inefficient

memory mapping of variables that exceed the initial per-thread

register allocation.

5. Future Work

This work introduces an extensive study conducted as well as its

insights. There are several aspects that can be taken from this study

and to be further elaborated in future GPU studies: All kernels

created in this work were written in the CUDA GPGPU

programming environment which is supported NVIDIA's GPUs, a

further study can be performed by rewriting the benchmarks' kernels

in other programming languages, such as the OpenCL programming

language, that can run on other devices – allowing a quantitative

study of other manufacturers such as Intel and ATI.

In all kernels, inner block behavior was tested – possible future

directions for this work should include cross block behavior and its

effect on performance such as register spilling for inter-block threads,

and the effects of grid level memory synchronization. Another

possible extension to this work can be done is a thorough analysis of

dynamic execution - to assure that benchmarks behaved as expected,

a static analysis of PTX dumps was done for most of the kernels

created, future studies elaborating this work should might gather

additional insight from a dynamic analysis using various mechanisms

such as performance counters and runtime profiling tools. Once these

benchmarks are more comprehensively studied, they can be extended

to a more comprehensive package that can be used as an

architecturally neutral benchmarking suite which serves as point of

reference for cross-platform GPU comparison.

6. References

[1] A. Grove, “Changing vectors of Moore’s law”, IEEE

International Electron Devices, June 2002.

[2] CUDA programming language home, NVIDIA corporation:

http://www.NVIDIA.com/object/cuda_home_new.html

[3] "OpenCL - The open standard for parallel programming of

heterogeneous systems", Khronos group

http://www.khronos.org/opencl/

[4] N. Goswami, R. Shankar, M. Joshi, and T. Li, “Exploring

GPGPU workloads: characterization methodology, analysis and

microarchitecture evaluation implication”, in Proceedings of

IEEE International Symposium on Workload Characterization

(IISWC), December 2010.

[5] A. Lashgar and A. Baniasadi. "Performance in GPU

Architectures: Potentials and Distances". 9th Annual Workshop

on Duplicating, Deconstructing, and Debunking (WDDD), June

2011.

[6] H. Wong, M.-m. Papadopoulou, M. Sadooghi-alvandi, and A.

Moshovos, “Demystifying GPU Microarchitecture through

Microbenchmarking,” 2010 IEEE International Symposium on

Performance Analysis of Systems and Software ISPASS ’10,

March 2010.

[7] M.M. Papadopoulou, M.S. Alvandi, H. Wong, "Micro-

benchmarking the GT200 GPU",

http://www.eecg.toronto.edu/~moshovos/CUDA08/arx/microbe

nchmark_report.pdf

[8] CUDA programming guide, NVIDIA corporation:

http://docs.NVIDIA.com/cuda/cuda-c-programming-guide/

[9] "GP-GPU: General Purpose Programming on the Graphics

Processing Unit", Computer vision and Geometry group, ETH

Zurich, spring 2011.

http://www.cvg.ethz.ch/teaching/2011spring/gpgpu/

http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/
http://www.eecg.toronto.edu/~moshovos/CUDA08/arx/microbenchmark_report.pdf
http://www.eecg.toronto.edu/~moshovos/CUDA08/arx/microbenchmark_report.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.cvg.ethz.ch/teaching/2011spring/gpgpu/

