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Abstract 

General-purpose GPUs (GPGPUs) hold the potential of a high 

computational throughput – supporting the execution of many 

concurrent tasks. The amount of computational intensity is enabled 

by the abundance of simple, low power execution units in a typical 

GPU microarchitecture. These systems trade performance features 

that consume much power, such as out-of-order execution, with new 

SW/HW interfaces. Thus, GPGPUs highly depend on efficient 

utilization of their microarchitecture that is enabled by software 

optimizations that should be carried out carefully. This is not a trivial 

task, since the optimizations that are done for one GPGPU 

architecture may not fit other systems. Unfortunately, many of the 

dominating characteristics of GPGPU microarchitectures are not 

publically available, as manufacturers tend to keep them under strict 

confidentiality. The purpose of this work is to suggest a set of micro-

benchmarks that aims to reveal the characteristics of different 

graphics cards, in respect to features that may impact the 

optimization of GPGPU applications. As a first step in this direction, 

this paper focuses on memory architecture of different NVIDIA 

cards. The tools and results presented in this work can be used either 

as a baseline for comparison between different generations of GPU 

cards and/or as a guideline for GPU programmers optimize their 

future applications. In order to explore the new proposed tools on 

different platforms, the kernels were executed under four different 

GPU systems using the CUDA programming environment.  This 

work highlights several insights that are often oblivious to 

programmers and can significantly affect GPU performance: in all 

systems tested, the overhead of fine grained synchronization for 

memory bound workloads resulted in a slowdown of over 260%; the 

inability to coalesce concurrent memory reads in massively parallel 

workloads caused a slowdown of over 264% and massive register 

spilling resulted a slowdown of more than 1140%. Another 

interesting insight which was noticed is that for some of the tests 

performed, newer GPU systems did not necessarily perform better 

than their predecessors. 

1. Introduction 

During the past decades computing industry has dealt with many 

challenges posed by the ever growing demand for computation. 

Power constraints have hindered the progress in single task 

performance [1] forcing a shift towards parallel hardware 

architectures, such as multi-core CPU and GPU architectures, that 

present a high computation potential without an increase in processor 

frequency rates. In order to exploit the benefits of these architectures, 

a shift in the commonly used software models was needed as well, 

towards parallel programming paradigms - as they enable the 

programmers to express computationally independent segments 

within a program as parallel tasks, which can be concurrently 

executed on different computation machines. The parallel 

computation era induces a growing dependency between hardware 

and software, as programmers and programming library developers 

should be more aware of the underlying hardware behavior, in order 

to efficiently utilize it. When comparing multicore CPU architectures 

to GPU architectures, the latter consist of a larger number of simpler 

processing elements, highly parallel memory architecture and mainly 

were used for graphic computations. As general purpose tasks 

become increasingly parallel, some of the recent programming 

environments, such as CUDA [2] and OpenCL [3] enable the 

execution of general purpose kernels on GPUs (often referred to as: 

"GPGPU"). Since GPGPU programs target an efficient utilization of 

GPU architecture, they usually consist of  many concurrently 

executing threads, which strain the various architectural elements and 

the memory in specific, making these programs highly sensitive to 

the underlying micro-architecture and the amount of collaboration 

between hardware and software. In this work a set of micro-

benchmarks was developed to expose some of the various behaviors 

in the GPGPU memory hierarchy – workloads explore register file 

spilling, the GPUs sensitivity to synchronization granularity and the 

effects of spatial memory locality.  

The main contributions of this work are:  

1. A set of structurally independent kernels which unravel some of 

the GPU's micro-architecture attributes. 

2. A quantitative study of four different commercial NVIDIA GPU 

platforms, from 2 major development generations - using the 

developed kernels as baseline for behavioral comparison.   

The testing process unveiled several issues, such as caching issues in 

the new GPU generations for global memory and unexpected 

overhead caused by in-thread-block synchronization primitives. In 

some cases, overhead related to enforcing tight synchronization for 

memory bound workloads is significant and result in a slowdown of 

over 260%. This raises the question on the use of automated 

synchronization mechanisms and their costs – such costs impede 

potential performance of GPU programs, therefore fit a programming 

model for which synchronization must be done explicitly by the 

programmer. This reveals some other important aspects of NVIDIA’s 

GPU characterization such as how efficient is the implementation of 

register spilling; this paper will report that under some conditions, it 

may cause a performance degradation of up to an order of magnitude.     



 

 

2. Related Work 

Several studies have dealt with GPU micro-architecture behavior; 

however, this work is the first to combine a quantitative study of four 

commercial GPU systems with benchmarks that are structurally 

independent, making them micro-architecturally neutral, this approach 

allows the benchmarks created to run on other GPU systems and in the 

future to be easily implemented on other GPGPU programming 

languages (e.g OpenCL). The work of Goswami et al. [4] has 

examined the behavior of a GPU environment for complex workloads 

(K-means, PCA etc.) to test different aspects, for that they have used a 

simulation environment (GPGPU-sim) and measured the runtimes 

under different configurations. Lashgar and Baniasadi [5] tested the 

implications of various control flow mechanisms on GPU memory 

behavior under GPGPU-sim as well, they have used CUDA to run a 

set of known benchmarks (NN, Matrix Multiplication etc.). Unlike the 

above mentioned papers, this work targets the pinpointing of specific 

behavioral patterns based on the results of synthetic benchmarks that 

were created and executed on real GPU systems. Wong et al [6] 

created a set of micro-benchmarks targeting various aspects of the 

NVIDIA GT200 GPU microarchitecture e.g. cache structure, branch 

divergence, clocking domains etc. The kernels presented in their work 

targeted specific structures in the micro-architecture (for example 

cache set structure), while this work contains generic kernels that do 

not have any structural assumptions (e.g. cache mapping, TPC/SM 

structure) on the tested micro-architectures, the affecting parameters 

were part of the programming model (e.g. number of threads, number 

of synchronization instructions)  thus enabling a more extensive study: 

the kernels' code was compiled and executed in the exact same 

manner on the 4 systems tested without any adaptations, enabling the 
most reliable methodology for comparing various GPU systems. 
 

3. Evaluation 

3.1 Platforms 

All systems run Ubuntu 12.04 on x86_64 architecture, the following 

tables contain the hardware configurations extracted using the 

cudaGetDeviceProperties() runtime function. 

Table 1. CUDA Capability 2.x machines 

 C2070 Quadro 2000 

Device Name Tesla C2070 Quadro 2000 

GPU Architecture Tesla Fermi 

CUDA Driver  

/ Runtime Version  5.0 /5.0 5.0 /5.0 

CUDA Capability  2.0 2.1 

Global memory size 6144 MBytes 1024 MBytes 

Multiprocessors 14 4 

CUDA Cores/MP 32 48 

Total number of cores 448 192 

GPU Clock rate 1.15 GHz 1.25 GHz 

Memory Clock rate 1.5 GHz 1.3 GHz 

Memory Bus Width 384-bit 128-bit 

L2 Cache Size 786432 bytes 262144 bytes 

Constant memory size 65536 bytes 65536 bytes 

Shared memory per block 49152 bytes 49152 bytes 

Max registers per block 32768 32768 

Warp size 32 32 

Max threads / MP 1536 1536 

Threads per block 1024 1024 

Linux kernel version 

3.2.0-32 

-generic 

3.2.0-32 

-generic 

 
 Table 2. CUDA Capability 3.x machines 

 GTX680 K20 

Device Name GeForce GTX 680 Tesla K20m 

GPU Architecture Kepler Tesla 

CUDA Driver  

/ Runtime Version  5.0 /5.0 5.0 /5.0 

CUDA Capability  3.0 3.5 

Global memory size 4096 MBytes  4800 MBytes  

Multiprocessors 8 13 

CUDA Cores/MP 192 192 

Total number of cores 1536 2496 

GPU Clock rate 1.06 GHz 0.71GHz 

Memory Clock rate 3 GHz 2.6 GHz 

Memory Bus Width 256-bit 320-bit 

L2 Cache Size 524288 bytes 1310720 bytes 

Constant memory size 65536 bytes 65536 bytes 

Shared memory per 

block 49152 bytes 49152 bytes 

Max registers per block 65536 65536 

Warp size 32 32 

Max threads / MP 2048 2048 

Threads per block 1024 1024 

Linux kernel version 3.2.0-38-generic 3.2.0-38-generic 

 

3.2 Benchmarks 

In order to get the best performance out of NVIDIA’s cards, this work 

presents a new Micro-benchmark suite, using the CUDA 

programming environment – the target of these benchmarks was to 

measure several aspects in cross-platform micro-architecture: 

structural characteristics such as cache line or pre-fetch sizes for the 

various memory types, and behavioral characteristics such as the 

effects of memory coalescing, cache misses, registers file spilling (a 

scenario in which a kernel's variables cannot fit in the register file and 

are stored in the memory) and by that provide a rough estimation to 

the performance variance between a highly tuned GPU kernel and an 

highly unbalanced kernel. For example, many adjacent memory reads 

from different threads can be grouped by the GPU memory scheduler 

to the same transaction by memory coalescing, while concurrent reads 

to distinct memory areas cannot be grouped and are performed in a 

sequential manner – resulting in severe performance degradation of 

almost an order of magnitude merely due to bad spatial locality, which 
is sometimes oblivious to the GPU programmer.  

  

3.3 Methodology 

The notation for benchmark performance in this work is derived from 

the latency perceived by the threads running the kernels, using 

CUDA's clock() function. Meaning, all kernels are structured in the 

following manner: 

 

<kernel definitions> 

start=clock(); 

<kernel execution code> 

end=clock(); 

return (start-end); 

 



The results extracted from the kernels were scaled from number of 

clocks to the actual latency according to the GPU clock rates given in 

Table 1 and in Table 2. The performance notation in this work was 

derived from perceived latencies; if needed, the throughput can be 

derived as well by combining the perceived latencies with the number 
of running threads.  

All kernels were executed under CUDA runtime version 5.0, compiled 

using "-O3" optimization flag ('-Olimit=118245' was sufficient for the 
kernels containing larger procedures). 

 
3.4 Main Results 

The tests conducted aim to both unveil the implications of 

programming patterns on the performance of the GPU memory 

architecture and compare memory architecture related features on 

different NVIDIA CUDA generations. In specific, these tests highlight 

4 main aspects in the memory hierarchy: 

1) The prefetch mechanism of the GPU, which translates into the 

ability of the GPU to exploit spatial memory locality, using its cache 
mechanisms. 

2) The overhead of global memory synchronization granularity in 
memory intense workloads. 

3) The contribution of memory coalescing to performance and the 

implications on performance for cases in which coalescing cannot be 
performed. 

4) The implications of the register spilling phenomenon that occurs in 
cases for which local variables cannot fit in the register file. 

 

3.4.1 Exploring locality different types of memory 

The purpose of this kernel is to discover the sizes and latency 

implications of caching mechanisms, if present. This is done by 

examining the effect of 'cold-start' misses – meaning, cache misses 

resulted from accesses to memory regions never before read. For that, 

kernels allocate a large array and perform 1024 sequential and 

dependent reads, divided to 512 couples. Each couple consists of 

"small jump, large jump" memory accesses: "large jump" is a fixed 

large distance for which no reasonable caching mechanism is designed 

to perform a pre-fetch (we have used a fixed size of 4KB) the size of 

"small jumps" varies between 1 and 512 bytes at distinct kernel 

executions. Note that this access pattern also prevents from stride 

detection mechanisms, if exist, to perform a pre-fetch. Benchmarks 

execute a single kernel at a time since the purpose of this kernel is to 
discover variance in latency resulted from a change in locality.  

Small 

jump=s

...

Large Jump=4K-s

...

Small 

jump=s

...

Large Jump=4K-s

...
                   0     1           s                                          4K 4K+1    4K+s                  Address: 

 
Figure 1. The memory access pattern for small jump size = S. 

 

 

To more accurately formulate the expected kernel results, the 

following functions were defined: 
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(1) 

𝐿(𝑠, 𝑛) returns 1 if the line size of level 𝑛 of the cache is larger than 𝑠. 

Therefore, 𝐻(𝑠, 𝑛) shall result in 1 if the line size of level 𝑛 of the 

cache is larger than 𝑠, but all of the cache levels which are closer to 

the processor, down to L1, have a smaller cache line size than 𝑠. 

Given 𝑁 cache levels, and the access time for each cache level 𝑘, 

𝑇(𝑙𝑒𝑣𝑒𝑙 𝑘), the expected kernel latency for "small jump" stride of size 

𝑠 should be the following: 
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  (2)  

 

Note that 𝐻(𝑠, 𝑘) returns non-zero result only for one value of 𝑘. Also 

mark that after each long jump, a memory access will be needed. 

Thus, we get that the expected time for the kernel to execute consists 

of 512 memory accesses (for the 512 long jumps) and 512 accesses to 

the first level of the cache (or memory) which contains the address of 

our last access plus our stride 𝑠. In order to refrain from further 

complicating formula (2) the assumption for the latency in level 𝑘, 

𝑇(𝑙𝑒𝑣𝑒𝑙 𝑘), is that it includes the latencies of the seek in lower levels. 

 

The kernel was executed for 4 different memory types supported by 

the CUDA runtime environment: the global memory, the constant 
memory, the shared memory and the texture memory. 

 

Shared memory: 

In current GPU systems the shared memory is an on-chip memory, 

making it potentially faster than other memory types. It is allocated 

per thread block, so all threads in the block have access to the same 

shared memory. Since the shared memory is relatively small this 
specific kernel contained a relatively small array of ~48KB.  

    

 

Figure 2.Execution results for shared memory with varied stride sizes 

 
As one can infer from figure 2 – for all systems tested, the shared 

memory has a fixed latency – this implies that shared memory is not 

cached (though it is often used as a user managed cache on software 

level). Though original kernels' results were in number of clocks - 

when combining the perceived latency with the clock rates in Table 1 

and Table 2, it appears that shared memory is around 70% slower for 
the new TeslaK20 CUDA system (generation 3.5). 
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Texture memory: 

Unlike other memory types, Texture memory space is an abstraction 

provided by the GPGPU programming environment, rather than a 

actual memory mapped to a physical device, as described in the 

CUDA programming guide [8] it is optimized for multidimensional 
accesses and can contain up to 4 coordinates. 

 
 

Figure 3.Execution results for texture memory with varied stride sizes 
 

As seen in figure 3 - for all systems tested, texture memory latency 

increased for a step size of 32 bytes, indicating that texture memory 

caches a line size of 32 bytes in the first level; this is likely since 

textures in CUDA consist of 4 dimensional coordinates which can be 
either long or double precisions (8 bytes each). 

 

Constant memory: 

The constant memory is an on-card memory, containing read-only 

data (i.e. variables and arrays annotated by the reserved 'constant' key 

word in CUDA) – the constant memory is accessible to all threads and 
blocks within a grid.    

 
 

Figure 4.Execution results for constant memory with varied stride 

sizes  

For all systems tested, Latency change for constant memory in 2 

distinctive points - in 64 bytes and 256 bytes, implying that constant 

memory has 2 levels of cache – the first of 64 byte line size, the 

second level is 256 bytes. Previous studies exploring the GT200 GPU 

system [7] reveal that GT200 has an L2 cache line of size 256 bytes – 

if this is the case here, it implies that upon access the GPU systems 

both loads the corresponding 64 bytes line into the L1 cache and 

initiate a pre-fetch transaction to request the corresponding 256 bytes 

line to the L2 cache. 

Global memory: 

Global memory stores global variables and variables and it can be 

used both by the GPU and the host (after proper mapping)   

 

Figure 5. Execution results for global memory with varied stride sizes 
 

As one can infer from figure 5, the global memory behaves 

differently for the previous generation CUDA systems (2.x). For the 

previous generation systems, the latency is increased in step sizes of 

64 bytes which indicate a first level cache line size of 64 bytes. For 

newer generation systems no latency increase can be seen in the 

graphs, indicating the absence of caching mechanism for global 

memory. A possible reason for the lack of global memory caching in 

3.x devices is due to high memory clock rates comparing to their 

predecessors, as mentioned in tables 1+2 – this suggests that the GPU 

manufacturers for CUDA devices with generations favored higher 

frequency memories over caching mechanisms. 

3.4.2 The effects of local thread synchronization 

This kernel explores the overhead caused by synchronizing threads for 

a memory bound workload, consisting solely of memory writes. The 

kernel performs 1024 memory accesses and using CUDA's 

__syncthreads()  to synchronize threads belonging to the same blocks. 

The parameter being changed here is N = number of __syncthreads()  

instructions, as N increased – so is the frequency of synchronization 

instructions, starting from N=1 (__syncthreads() is called only at the 

end of all 1024 accesses) and reaching N=1024 (__syncthreads() is 

called after every memory access) - given a general N the kernel 
execution code is structured in the following manner: 

 

"1024 Memory writes, N syncs" kernel execution code 

 

𝑎𝑟𝑟[0]  =  𝑝 + +;  
𝑎𝑟𝑟[1]  =  𝑝 + +;  
…  

𝑎𝑟𝑟[(1024/𝑁) − 1]  =  𝑝 + +;  
__𝑠𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠();  
𝑎𝑟𝑟[1024/𝑁]  =  𝑝 + +;  
𝑎𝑟𝑟[(1024/𝑁) + 1]   =  𝑝 + +;  
…  

𝑎𝑟𝑟[(2 ∗ 1024/𝑁) − 1]  =  𝑝 + +;  
__𝑠𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠();  
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…  

 

As N increases, the overhead of memory synchronizations increase 

accordingly, in a sense one can perceive N=1024 as fine grained 

synchronization (synchronization performed after every memory 

access) performed for benchmarks with high memory traffic. The 

benchmarks were executed several times - both for varied number of 

synchronizations and for varied number of threads. All threads 

execute the abovementioned kernel code on the same array, mapped to 

the global memory; by enforcing such workload with varied 

synchronization frequency this benchmark targets a quantification of 

the overhead caused by global memory synchronization in a memory 

bound workload 

 

CUDA 2.x systems: 

 
 
 

Figure 6. Latency of 1024 global memory writes w.r.t the frequency 
of synchronization instructions for Tesla C2070. 
 

 
 

Figure 7. Latency of 1024 global memory writes w.r.t the frequency 

of synchronization instructions for Fermi Quadro 2000. 

 

 

 

 

 

CUDA 3.x systems: 

 
 

Figure 8. Latency of 1024 global memory writes w.r.t the frequency 
of synchronization instructions for Kepler GTX680. 

 
 

 

Figure 9. Latency of 1024 global memory writes w.r.t the frequency 
of synchronization instructions for Tesla K20. 

 

When looking at figures 6-9 one can deduct that a change in the 

number of concurrent threads increases latency by a maximum of 

13% for Fermi Quadro 2000, 11% for Tesla C2060, 38% for Tesla 

K20 and 6% for Kepler GTX 680, while the increase in the frequency 

of synchronization instructions (up to one for each memory write) 

increases latency by 163% for Fermi Quadro 2000, 178% for Tesla 

C2060, 223% for Kepler GTX 680 and 281% for Tesla K20. This 

clearly demonstrates the magnitude of overhead resulted from fine 

grained synchronization in high memory bound benchmarks, harming 

both latency and throughput thus impeding the gain from a high 

number of threads. It can also be inferred that Kepler GTX680 

demonstrated the best performance, while the Tesla K20 GPU, which 

is a more advanced device, suffered from some fluctuations and 

performed worse.  
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3.4.3 The effects of memory coalescing 

In order to examine the behavior under various concurrent global 

memory access patterns, threads executing this kernel invoke a 

sequence of 1024 read instructions from adjacent addresses, each 

thread starts from a different offset – by changing the number of 

threads and the size of the offset, this micro-benchmarks simulates 

varying stress on the memory scheduler, as well as examining the size 
of the coalescing window.       

 

"1024 reads +  varied offset" kernel execution code: 

start = thread_id*offset; 

for (i =0; i < 1024; i++) read(array[start+i]) 

 

 

... ... ...

                   0     1       offset                                   1K-1  1K   1K+offset                  Address: 

Thread 0

Thread 1

Thread2

offset

offset

 

Figure 10. Memory coalescing benchmark flow for 3 threads 

 

The cross-thread offset was changed from 4 bytes (high adjacency 

between threads, the memory scheduler can coalesce several threads 

reads) to 1KB (all threads read from distinct memory areas) 

 

Tesla C2070+ Fermi Quadro 2000: 

 
Figure 11. 1024 consecutive memory with varied threads staring 

points w.r.t number of threads for Fermi Quadro 2000 

 
 

Figure 12. 1024 consecutive memory with varied threads staring 
points w.r.t number of threads for Tesla C2070 

 

CUDA 3.x systems: 

 
Figure 13. 1024 consecutive memory with varied threads staring 
points w.r.t number of threads for Kepler GTX 680 

 

 
 

Figure 14. 1024 consecutive memory with varied threads staring 
points w.r.t number of threads for Tesla K20 
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The issues that can be inferred from the above figures are as follows: 

1. Latency increases as a function of the number of threads – since 

not all memory transactions that are invoked concurrently can be 

executed concurrently via coalescing. 

2. The latency increases as the offset increase – a larger offset 

reduces the spatial locality between threads, therefore the ability to 

coalesce their memory transactions. The overhead of high offset 

combined with many concurrently executing threads was 898% for 

the C2070 system, 770% for the Fermi Quadro 2000 system, 443% 

for the Kepler GTX680 system and 263% for the Tesla K20 system.   

3. The increase in latency plateaus for 16 threads in both 2.x systems. 

The probable reason is caching – since all threads perform serial 

reads, as number of threads increase so is the number of lines 

concurrently loaded to the global memory cache (therefore threads 

can use data pre-fetches earlier by other threads). An additional 

increase in latency is spotted starting 128 threads for both systems, 

for offsets larger than 32 bytes. The reason for that is a global cache 

fill-up, which is caused by the increasing of both the offset size and 

the number of threads, which together enlarge the effective working 

set, crossing the maximal cache set capacity. The loss of locality 

causes performance degradation of up to 650% in both systems 

(comparing to the executions with 4 bytes strides). 

4. The increase in latency plateaus for 32 threads in 3.x systems and 

in addition, overall latency is higher than the latency of 2.x systems – 

the reason for that probably also lies in the absence of cache 

mechanism for 3.x systems: without the ability to coalesce reads, and 

without any cache structure, 3.x systems perform worse than their 2.x 

counterparts, under memory bound workloads and no ability to 

coalesce the accesses to the memory. 

3.4.4 The effects of register spilling 

When a program has more live variables than the machine has 

registers, some variables are "spilled" from the register file into the 

memory. The purpose of this benchmark is to quantify the effects of 

register spilling, by changing the number of long variables defined in 

the kernel. Since too many variables cannot fit in the register file at a 

given time, they shall be stored in the memory that will be used as an 

extension to the register file. In order to prevent the compiler from 

optimizing the code and group the variables, the variables are loaded 

and stored in a random order, thus creating a dependency tree which is 

too complex to be resolved for a large enough number of variables. 

Below is the pseudo code for the benchmark kernel, for which X 
represents the number of variables. 

 

 
Kernel definition code: 
<define X long variables initialized to random values > 

Long v; 

 
kernel execution code: 

𝐷𝑂 4096:  
𝑣   +=  𝑥𝑖;   /∗ (𝑥𝑖  𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) ∗/  

𝑥𝑘  +=  𝑣;    /∗ (𝑥𝑘  𝑖𝑠 𝑎 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) ∗/   

 

 

 

 

 

 

 

 

CUDA 2.x systems: 

 

 
 

Figure 15. 4096 reads and writes with varied number of long 

variables w.r.t number of threads for Fermi Quadro 2000 

 

 
 

Figure 16. 4096 reads and writes with varied number of long 
variables w.r.t number of threads for Tesla C2070 
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CUDA 3.x systems: 

 

 

 

Figure 17. 4096 reads and writes with varied number of long 

variables w.r.t number of threads for Kepler GTX 680 

 

 

 

 

 

 

 

Figure 18. 4096 reads and writes with varied number of long 

variables w.r.t number of threads for Tesla K20 

 

When examining the above results, some trends can be extracted 

from  the figures above:  

1. For all systems, the latency has been increased for benchmarks 

with large number of variables – the phenomenon was even more 

significant in cases for which number of threads was more than 32. 

When re-examining tables 1+2, there are 32 threads per warp. This 

indicates that the combination of multiple warps with large number 

of variables stresses the register file.   

2. For all systems except the K20, the significant increase in latency 

started when the number of variables crossed 64, regardless of the 

number of threads - implying that most systems support a register file 

that is able to store 64 user variables (512B of storage) per thread. 

For the TeslaK20 system, the significant increase started for 512 

bytes – this suggests that the K20 allocates for larger storage for 

variables than its predecessors (although table 2 states both GTX 680 

and K20 has the same register file size). 

3. For 32 threads and less, the increase in the number of concurrently 

running threads does not significantly affect performance for a small 

enough number of variables. Thus, the dominating factor for 

performance is the number of variables (and registers) used - 

implying that all systems allocate per-thread registers to store 

variables. For more than 32 threads, the dominating factor was still 

the number of variables but an additional increase in latency is seen 

as number of threads increase, indicating an overhead of a possible 

arbitration mechanism between executing warps. 

4. When examining single thread performance, one can notice that 

for 2048 long variables (total size of 16KB), there is a significant 

slowdown of about 1140%. As shown in Table 1 and Table 2, this 

amount of data can easily fit in standard cache memories. However, 

as it appears in the figures, the considerable slowdown caused by the 

register spilling implies that all of the GPU systems that were tested 

do not cache the spilled variables, but just save them in another 

memory (slower than the cache) instead. 

 

4. Conclusions 

In this work several GPGPU benchmarks were written in the CUDA 

programming environment. The target was to provide a way for 

pinpoint the strengths and pitfalls in current commercial GPU 

systems with an emphasis on the memory hierarchy – these 

benchmarks are structurally independent, as there were no 

assumptions on any internal hardware structures or cache mapping 

schemes. This made it natural for the benchmarks to be executed on 

multiple GPU systems and motivated the cross-platform comparison 

made in this work, given 4 different NVIDIA GPU systems. The 

structural independence approach also made the benchmarks code 

highly robust, as it can be easily re-written and executed under other 

programming languages and to be tested on different GPU systems.  

In spite of structural independence, combining with the information 

available in GPU specs these benchmarks unveiled some strengths 

and pitfalls that are the results of internal GPU structure.  

Some of the results that were found - although fit one’s intuition, 

were not yet quantified by previous studies: 

1. The overhead of fine grained memory synchronization for threads 

belonging to the same block has a significant effect on kernel latency 

(therefore can affect overall utilization and throughput) - the 

slowdown measured was over 260% while an increase in number of 

threads results in a slowdown of  at most 138% - one can deduct from 

these findings that the cost of fine grained synchronization  can 

impede future progress in GPU performance, therefore 

synchronization should not be enforce automatically by hardware or 

software, but rather handled explicitly by GPU programmers. 
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2. Not all memory types supported by the GPGPU programming 

environment perform the same, as they can be stored on different 

memory elements and implement different caching mechanisms. 

Moreover, caching mechanisms for the same memory type might not 

be implemented in some systems while they are implemented in other 

systems. (Such as the case of global memory caching, which is 

implemented in 2.x systems, but not in 3.x). 

3. The cost of registers spilling is not dominated by the number of 

threads – suggesting a per-thread register allocation policy. 

Other results found in this works were somewhat counter intuitive:  

1. The inability to coalesce concurrently executing global memory 

transactions has a significant effect as well. In the benchmarks, each 

thread accessed data in a locally sequential manner, reading a series 

of consecutive addresses from a single array. In cases where 

concurrently executing inter-thread accesses were too distant they 

interfered with execution, resulting in a slowdown of over 264%.This 

has implications on the way GPU programs are written: although 

each thread has a good spatial locality when executed independently, 

poor inter-thread locality (i.e. concurrently executing threads access 

distant memory regions) can result an unexpected performance 

bottleneck due to inefficient memory scheduling.     

2. The newest GPU system tested, the Tesla K20, did not achieve the 

best results in most benchmarks: (i) the lack of caching mechanism 

for the global memory in CUDA 3.x systems caused the inability of 

memory coalescing to appear for a smaller number of threads than 

2.x systems (ii) The K20 also suffered from the most significant 

performance loss due to fine grained global memory synchronization 

(iii) the average access time to both shared and global memories was 

high. These findings emphasize the importance of regression in 

future GPU systems, as some micro-architectural elements of modern 

GPU systems tend to perform worse than their predecessors.  

3. The cost of register spilling is surprisingly high as it can reach an 

order of magnitude in performance loss – even though the overall 

number of storage needed by the benchmarks was relatively small (at 

most 16KB per thread). This suggests that the register spilling caused 

by the benchmarks was poorly handled, perhaps due to inefficient 

memory mapping of variables that exceed the initial per-thread 

register allocation. 

 

5. Future Work 

This work introduces an extensive study conducted as well as its 

insights. There are several aspects that can be taken from this study 

and to be further elaborated in future GPU studies: All kernels 

created in this work were written in the CUDA GPGPU 

programming environment which is supported NVIDIA's GPUs, a 

further study can be performed by rewriting the benchmarks' kernels 

in other programming languages, such as the OpenCL programming 

language, that can run on other devices – allowing a quantitative 

study of other manufacturers such as Intel and ATI.  

In all kernels, inner block behavior was tested – possible future 

directions for this work should include cross block behavior and its 

effect on performance such as register spilling for inter-block threads, 

and the effects of grid level memory synchronization. Another 

possible extension to this work can be done is a thorough analysis of 

dynamic execution - to assure that benchmarks behaved as expected, 

a static analysis of PTX dumps was done for most of the kernels 

created, future studies elaborating this work should might gather 

additional insight from a dynamic analysis using various mechanisms 

such as performance counters and runtime profiling tools. Once these 

benchmarks are more comprehensively studied, they can be extended 

to a more comprehensive package that can be used as an 

architecturally neutral benchmarking suite which serves as point of 

reference for cross-platform GPU comparison. 
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