
Spring 2014

Eran Harpaz

Hagar Porat

Supervisor: Noam Shalev

NSSL lab

Background

Background

Background

Background
 Many-core is here

Background
 Mid-quality hardware is favored

 Hardware reliability decreases

 Chances of core permanent hardware fault increase

Hardware
Reliability

Number
of cores

Core #0 Core #1

Core #2 Core #3

Failure Model

Core #0 Core #1

Core #2 Core #3

Failure Model

Core #0 Core #1

Core #2 Core #3

Failure Model

Hello?

Core #0 Core #1

Core #2 Core #3

Failure Model

Hello?
What were
you doing?

Core #0 Core #1

Core #2 Core #3

Failure Model

Hello?
What were
you doing?

Kernel?
User?

Registers?

Nowadays

Nowadays

Do we really have to shut down the CPU completely?

Core Surprise Removal Mechanism
(CSR)

 Recovery mechanism for Linux:

 Faulty core detection
 Watchdog

 System is aware of faulty core

Core Surprise Removal Mechanism
(CSR)

CSR – User Mode

Core #0 Core #1

Core #3

CSR – User Mode

Core #0 Core #1

Core #3

CSR – User Mode

Core #0 Core #1

Core #3

“A fly in the ointment”

CSR – Kernel (OS) Mode

Kernel Kernel

Kernel Kernel

CSR – Kernel (OS) Mode

Kernel Kernel

Kernel Kernel

CSR – Kernel (OS) Mode

Kernel Kernel

Kernel Kernel

CSR – Kernel (OS) Mode

Kernel Kernel

Kernel Kernel

CSR – Kernel (OS) Mode

Kernel Kernel

Kernel Kernel

CSR – Kernel (OS) Mode

Kernel Kernel

Kernel Kernel

CSR – Kernel (OS) Mode

Kernel Kernel

Kernel Kernel

Goal
Tolerate core permanent hardware faults
even during kernel critical sections

Take 1: Reclaim Locks

 Lock ownership

 System may end up in an intermediate-state

 We cannot tell what part of the critical section was
executed

Take 1: Example

Take 1: Example

CRASH

Take 1: Example

CRASH

Our Solution:

Use Transactions

[Gray J.] The Transaction Concept: Virtues and Limitations. Tandem TR 81.3 , 1981

What is a transaction?
 Sequence of memory operations that either commits or

aborts.

 Upon commit, changes appear to have executed
atomically.

What is a transaction?
 Sequence of memory operations that either commits or

aborts.

 Upon commit, changes appear to have executed
atomically.

TRANSACTIONS [Rajwar et al. 2001]

 More concurrency than locks

R. Rajwar and J. R. Goodman. Speculative lock elision: Enabling highly concurrent

multithreaded execution. DC, USA, 2001. IEEE Computer Society.

HARDWARE
TRANSACTIONS [Herlihy et al. 1993]

 Hardware transactional memory – HTM

 Much more time efficient than software

M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for Lock-free

Data Structures. SIGARCH Comput. Archit. News, 21(2):289–300, May 1993.

Hardware Transactions
 Much more time efficient than software

 More concurrency than locks

Hardware Transactions
 Much more time efficient than software

 More concurrency than locks

Transactions may be used by the kernel

Intel TSX feature
 XBEGIN

 XEND

 XTEST

 XABORT

[Intel] Intel R Architecture Instruction Set Extensions Programming Reference, chapter

Transactional Synchronization

Transactions may be used by
the kernel

Replace Kernel Locks
 Update Linux code to use transactions instead of locks

 TxLinux [Rossbach et al. 2007]

 Simulator

 Seeking Performance

C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan, A. Bhandari, and E.

Witchel. TxLinux: Using and Managing Hardware Transactional Memory in an Operating

System. In SOSP, 2007.

Step 1: Replace Kernel Locks

lock(lock_X)
...critical section...

X = X + 2 ;
unlock(lock_X)

Begin_tx {
...critical section...

X = X + 2 ;
}COMMIT

Step 2: Fallback (Abort Handler)
 Fallback must be provided to transactions

 Try again, and again, and again…

10,000,
000

Step 3: Limited Retries
 We retry, but not forever

 After many retries, resort to locks

10,000,
000

Step 3: Limited Retries
 We retry, but not forever

 After many retries, resort to locks

 System boots but runs too slow

10,000,
000

Step 3: Limited Retries
 We retry, but not forever

 After many retries, resort to locks

 System boots but runs too slow

 Only 10% execute transactionally
(Commit Rate)

Step 4: Fix Problematic Sections
 I/O operation

 Large sections

Step 4: Fix Problematic Sections
 I/O operation

 Large sections

Only 60%
commit rate

Step 5: Variant Retries
 10 attempts for problematic section

 99% commit rate

Step 5: Variant Retries
 10 attempts for problematic section

 99% commit rate

Step 6: Optimal Retries

97

98

99

100

1 10 10^2 10^3 10^4 10^5 10^6 10^7

Retries

Commit Rate

32 Threads

97

98

99

100

1 10 10^2 10^3 10^4 10^5 10^6 10^7

Retries

Commit Rate

32 Threads

Step 6: Optimal Retries
 100 retries

 99.9%

Step 7: Transactions & Locks
 We updated ~50 critical sections

 There are still lock-based sections

 What if a transactional section conflicts with a locked
one?

Transactions & Locks - Scenario 1

Thread 1

Begin_tx{
...critical section #1...

Write(X) = 0
} COMMIT

Thread 2
lock(lock_X)
...critical section #2...

temp = Read(X)

Write(X) = temp+2
unlock(lock_X)

Time

Transactions & Locks - Scenario 1

Thread 1

Begin_tx{
if (lock_X is locked){

ABORT
} else {

...critical section #1...
Write(X) = 0

} COMMIT

Thread 2
lock(lock_X)
...critical section #2...

temp = Read(X)

Write(X) = temp+2
unlock(lock_X)

Time

Transactions & Locks - Scenario 2

Thread 1
Begin_tx{

if (lock_X is locked){
ABORT

} else {
...critical section #1...

Read(X)

Write(X)
} COMMIT

Thread 2

lock(lock_X)
...critical section #2...

Write(X)
unlock(lock_X)

Time

Transactions & Locks - Scenario 2

Thread 1
Begin_tx{

if (lock_X is locked){
ABORT

} else {
...critical section #1...

Read(X)

Write(X)
} COMMIT

Thread 2

lock(lock_X)
...critical section #2...

Write(X)
unlock(lock_X)

Time

Code Example
 Added ~500 lines of code

Code Example
 Added ~800 LOC

Code Example

Invoked every 4ms
 Added ~800 lines of code

Code Example

Original code

Code Example

Original code

Code Example

Original code

Code Example

Original code

Code Example

Original code

Code Example

Original code

CSR & HTM
 We created a “bulletproof” Linux

 CSR - Core surprise removal mechanism

 HTM – Hardware Transactional Memory

Simulate Core Hardware Fault
 Evaluate our enhanced OS

 Fail a core during critical section

Failed core is:
1. Unresponsive
2. Not changing anything

Failed core is:
1. Unresponsive
2. Not changing anything

Failed core is:
1. Unresponsive
2. Not changing anything

Failed core is:
1. Unresponsive
2. Not changing anything

Failed core is:
1. Unresponsive
2. Not changing anything

Cancelled upon transaction time out

Failed core is:
1. Unresponsive
2. Not changing anything

Failed core is:
1. Unresponsive
2. Not changing anything

 We got a fault-tolerant OS

 System survives single failure as well as cascading failures

 Performance gain

 Power consumption reduced

Results

 We got a fault-tolerant OS

 System survives single failure as well as cascading failures

 Performance gain

 Power consumption reduced

Results

Energy SavingPerformance GainCommit RateWorkload

4%-100%Idle

1%0%99.9%16-threads

3%3%99.9%32-threads

2%4%99.8%64-threads

Demo

[Gray J.] The Transaction Concept: Virtues and Limitations. Tandem TR 81.3 ,
1981

R. Rajwar and J. R. Goodman. Speculative lock elision: Enabling highly
concurrent multithreaded execution. DC, USA, 2001. IEEE Computer Society.

M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for
Lock-free Data Structures. SIGARCH Comput. Archit. News, 21(2):289–300, May
1993.

[Intel] Intel R Architecture Instruction Set Extensions Programming Reference,
chapter Transactional Synchronization

C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan, A. Bhandari, and E.
Witchel. TxLinux: Using and Managing Hardware Transactional Memory in an
Operating System. In SOSP, 2007.

References

