
Spring 2014

Eran Harpaz

Hagar Porat

Supervisor: Noam Shalev

NSSL lab

Background

Background

Background

Background
 Many-core is here

Background
 Mid-quality hardware is favored

 Hardware reliability decreases

 Chances of core permanent hardware fault increase

Hardware
Reliability

Number
of cores

Core #0 Core #1

Core #2 Core #3

Failure Model

Core #0 Core #1

Core #2 Core #3

Failure Model

Core #0 Core #1

Core #2 Core #3

Failure Model

Hello?

Core #0 Core #1

Core #2 Core #3

Failure Model

Hello?
What were
you doing?

Core #0 Core #1

Core #2 Core #3

Failure Model

Hello?
What were
you doing?

Kernel?
User?

Registers?

Nowadays

Nowadays

Do we really have to shut down the CPU completely?

Core Surprise Removal Mechanism
(CSR)

 Recovery mechanism for Linux:

 Faulty core detection
 Watchdog

 System is aware of faulty core

Core Surprise Removal Mechanism
(CSR)

CSR – User Mode

Core #0 Core #1

Core #3

CSR – User Mode

Core #0 Core #1

Core #3

CSR – User Mode

Core #0 Core #1

Core #3

“A fly in the ointment”

CSR – Kernel (OS) Mode

Kernel Kernel

Kernel Kernel

CSR – Kernel (OS) Mode

Kernel Kernel

Kernel Kernel

CSR – Kernel (OS) Mode

Kernel Kernel

Kernel Kernel

CSR – Kernel (OS) Mode

Kernel Kernel

Kernel Kernel

CSR – Kernel (OS) Mode

Kernel Kernel

Kernel Kernel

CSR – Kernel (OS) Mode

Kernel Kernel

Kernel Kernel

CSR – Kernel (OS) Mode

Kernel Kernel

Kernel Kernel

Goal
Tolerate core permanent hardware faults
even during kernel critical sections

Take 1: Reclaim Locks

 Lock ownership

 System may end up in an intermediate-state

 We cannot tell what part of the critical section was
executed

Take 1: Example

Take 1: Example

CRASH

Take 1: Example

CRASH

Our Solution:

Use Transactions

[Gray J.] The Transaction Concept: Virtues and Limitations. Tandem TR 81.3 , 1981

What is a transaction?
 Sequence of memory operations that either commits or

aborts.

 Upon commit, changes appear to have executed
atomically.

What is a transaction?
 Sequence of memory operations that either commits or

aborts.

 Upon commit, changes appear to have executed
atomically.

TRANSACTIONS [Rajwar et al. 2001]

 More concurrency than locks

R. Rajwar and J. R. Goodman. Speculative lock elision: Enabling highly concurrent

multithreaded execution. DC, USA, 2001. IEEE Computer Society.

HARDWARE
TRANSACTIONS [Herlihy et al. 1993]

 Hardware transactional memory – HTM

 Much more time efficient than software

M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for Lock-free

Data Structures. SIGARCH Comput. Archit. News, 21(2):289–300, May 1993.

Hardware Transactions
 Much more time efficient than software

 More concurrency than locks

Hardware Transactions
 Much more time efficient than software

 More concurrency than locks

Transactions may be used by the kernel

Intel TSX feature
 XBEGIN

 XEND

 XTEST

 XABORT

[Intel] Intel R Architecture Instruction Set Extensions Programming Reference, chapter

Transactional Synchronization

Transactions may be used by
the kernel

Replace Kernel Locks
 Update Linux code to use transactions instead of locks

 TxLinux [Rossbach et al. 2007]

 Simulator

 Seeking Performance

C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan, A. Bhandari, and E.

Witchel. TxLinux: Using and Managing Hardware Transactional Memory in an Operating

System. In SOSP, 2007.

Step 1: Replace Kernel Locks

lock(lock_X)
...critical section...

X = X + 2 ;
unlock(lock_X)

Begin_tx {
...critical section...

X = X + 2 ;
}COMMIT

Step 2: Fallback (Abort Handler)
 Fallback must be provided to transactions

 Try again, and again, and again…

10,000,
000

Step 3: Limited Retries
 We retry, but not forever

 After many retries, resort to locks

10,000,
000

Step 3: Limited Retries
 We retry, but not forever

 After many retries, resort to locks

 System boots but runs too slow

10,000,
000

Step 3: Limited Retries
 We retry, but not forever

 After many retries, resort to locks

 System boots but runs too slow

 Only 10% execute transactionally
(Commit Rate)

Step 4: Fix Problematic Sections
 I/O operation

 Large sections

Step 4: Fix Problematic Sections
 I/O operation

 Large sections

Only 60%
commit rate

Step 5: Variant Retries
 10 attempts for problematic section

 99% commit rate

Step 5: Variant Retries
 10 attempts for problematic section

 99% commit rate

Step 6: Optimal Retries

97

98

99

100

1 10 10^2 10^3 10^4 10^5 10^6 10^7

Retries

Commit Rate

32 Threads

97

98

99

100

1 10 10^2 10^3 10^4 10^5 10^6 10^7

Retries

Commit Rate

32 Threads

Step 6: Optimal Retries
 100 retries

 99.9%

Step 7: Transactions & Locks
 We updated ~50 critical sections

 There are still lock-based sections

 What if a transactional section conflicts with a locked
one?

Transactions & Locks - Scenario 1

Thread 1

Begin_tx{
...critical section #1...

Write(X) = 0
} COMMIT

Thread 2
lock(lock_X)
...critical section #2...

temp = Read(X)

Write(X) = temp+2
unlock(lock_X)

Time

Transactions & Locks - Scenario 1

Thread 1

Begin_tx{
if (lock_X is locked){

ABORT
} else {

...critical section #1...
Write(X) = 0

} COMMIT

Thread 2
lock(lock_X)
...critical section #2...

temp = Read(X)

Write(X) = temp+2
unlock(lock_X)

Time

Transactions & Locks - Scenario 2

Thread 1
Begin_tx{

if (lock_X is locked){
ABORT

} else {
...critical section #1...

Read(X)

Write(X)
} COMMIT

Thread 2

lock(lock_X)
...critical section #2...

Write(X)
unlock(lock_X)

Time

Transactions & Locks - Scenario 2

Thread 1
Begin_tx{

if (lock_X is locked){
ABORT

} else {
...critical section #1...

Read(X)

Write(X)
} COMMIT

Thread 2

lock(lock_X)
...critical section #2...

Write(X)
unlock(lock_X)

Time

Code Example
 Added ~500 lines of code

Code Example
 Added ~800 LOC

Code Example

Invoked every 4ms
 Added ~800 lines of code

Code Example

Original code

Code Example

Original code

Code Example

Original code

Code Example

Original code

Code Example

Original code

Code Example

Original code

CSR & HTM
 We created a “bulletproof” Linux

 CSR - Core surprise removal mechanism

 HTM – Hardware Transactional Memory

Simulate Core Hardware Fault
 Evaluate our enhanced OS

 Fail a core during critical section

Failed core is:
1. Unresponsive
2. Not changing anything

Failed core is:
1. Unresponsive
2. Not changing anything

Failed core is:
1. Unresponsive
2. Not changing anything

Failed core is:
1. Unresponsive
2. Not changing anything

Failed core is:
1. Unresponsive
2. Not changing anything

Cancelled upon transaction time out

Failed core is:
1. Unresponsive
2. Not changing anything

Failed core is:
1. Unresponsive
2. Not changing anything

 We got a fault-tolerant OS

 System survives single failure as well as cascading failures

 Performance gain

 Power consumption reduced

Results

 We got a fault-tolerant OS

 System survives single failure as well as cascading failures

 Performance gain

 Power consumption reduced

Results

Energy SavingPerformance GainCommit RateWorkload

4%-100%Idle

1%0%99.9%16-threads

3%3%99.9%32-threads

2%4%99.8%64-threads

Demo

[Gray J.] The Transaction Concept: Virtues and Limitations. Tandem TR 81.3 ,
1981

R. Rajwar and J. R. Goodman. Speculative lock elision: Enabling highly
concurrent multithreaded execution. DC, USA, 2001. IEEE Computer Society.

M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for
Lock-free Data Structures. SIGARCH Comput. Archit. News, 21(2):289–300, May
1993.

[Intel] Intel R Architecture Instruction Set Extensions Programming Reference,
chapter Transactional Synchronization

C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan, A. Bhandari, and E.
Witchel. TxLinux: Using and Managing Hardware Transactional Memory in an
Operating System. In SOSP, 2007.

References

