

2016

Android Thumb Click

BY:
MARIA KOZAKOV MICHAEL VALERSHTEIN

SUPERVISOR- NOAM SHALEV

TECHNION – ISRAEL INSTITUTE OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING

Contents
1. Introduction ... 2

2. Motivation ... 2

3. Background .. 2

4. Implementation Requirements ... 4

5.Android input system ... 5

5.1 Linux touchscreen driver .. 5

5.2- Android Native ... 8

5.2.1 Starting up the input native pipeline .. 8

5.2.2 InputManager ... 9

5.2.3 InputReader .. 9

5.2.4 InputDispatcher .. 9

5.2.5 EventHub.cpp ... 11

5.3 - Android low levels ... 11

5.3.1 Application usage of touch events ... 12

5.4 Android Framework and Gestures .. 13

5.4.1 Gesture detector .. 14

5.4.2 FatTouch and Gestures ... 17

5.5 Implementation ... 18

5.5.1 Resolving FatTouch ... 18

5.5.2 Implementation in GestureDetector .. 21

5.6 Proof of Concept .. 23

6. Conclusions .. 25

8. Bibliography ... 26

7. APPENDIX... 27

7.1 EventHub.getEvent() ... 27

7.2 InputDispatcher.dispatchOnce() ... 29

7.3 InputReader::loopOnce()... 30

7.4 View.onTouchEvent(MotionEvent event .. 31

7.5 Table of Figure ... 33

1. Introduction

Our project goal is to integrate a new kind of touch into the android system, called FatTouch.

FatTouch performed by touching the screen with full thumb for short period of time and will

enable adding new functionalities to user interactions with touch devices.

2. Motivation

Touch devices, such as smartphones and tablets are integral part of everyday life. As if

today, touch is the most common way to interact with devices. There is limited number of

touch gestures are at user’s disposal. As complexity of touch devices and applications grow,

introduction of new interaction ways is inevitable.

Adding new touch based interaction methods, have proven to open new possibilities to

application developers. For example, adding multi-touch made it possible to use pinch to

zoom, develop games which require using use of multiple and simultaneous touch.

3. Background

Android is an open source Linux based operating system developed by Google for mobile

devices. The Android platform is made up of five main components:

 Linux kernel

 Android runtime

 System libraries

 Application framework

 Applications

The components structure is described in Figure1:

FIGURE 1- ANDROID MAIN COMPONENTS

Android uses a Linux 2.6 based kernel and includes various additions to support features

such as power management, inter-process communication, and framebuffers used by

system libraries and the application framework. At this point in time, the Android kernel is a

fork of the mainline Linux kernel due to disagreements between the Linux kernel

maintainers and Google.

The Android runtime includes a Java virtual machine created by Google, called the Dalvik

virtual machine, as well as a set of core libraries that provide most of the functionality

available in the core libraries of the Java programming language. The Dalvik VM runs

executables in the Dalvik Executable (.dex) format, which are classes compiled by a Java

language compiler that have been transformed into the .dex format by the “dx” tool. The

Dalvik VM is optimized for minimal memory footprint and good performance in resource

constrained environments (such as mobile devices). The Dalvik VM is register-based and

relies on the Linux kernel for underlying functionality such as threading and low-level

memory management.

The Android system libraries are a collection of C/C++ libraries used and exposed to

developers by the Android application framework. This includes libraries such as the

standard C system library, media libraries, SQLite database library, WebKit engine, surface

manager, SGL, and 3D libraries.

The Android application framework is a set of services and APIs that provide management of

applications and components for building and running applications. The available developer

APIs are exposed through the Android SDK. Android applications are programs built by

Google and third-party developers in Java (and C/C++ if using the Android Native

Development Kit, or NDK).

Android SDK exposes several ways to deal with touch:

- Use of GestureDetector. Application developers have an option to use

GestureDetector class for detecting common gestures.

- Override OnTouchEvent method of View class and define what to do when certain

touch events occur.

4. Implementation Requirements

Introducing new features is not an easy task. Current users need to be able to get

accustomed to them easily, they must be intuitive and easy to use. Users have physiological

differences which must be taken into account at planning stage, e.g. differences in thumb

dimensions.

Application developers, have to be taken into account as well. Developing applications that

use new feature need to be made as easy as possible with minimal performance impact.

New applications shall not be forced to use the feature. As for existing applications, the

feature need not to require any changes in current implementation.

At this project we made changes in Android source code. For these changes to be integrated

easily into Android repositories, we need to take into account current Android architecture

and add our feature without changing it.

5.Android input system

5.1 Linux touchscreen driver

All Android OS versions are based on Linux kernel. Linux kernel is the lowest level of Android

OS which interfaces with the hardware of host device. It is responsible for interfacing all of

applications that are running in “user mode” down to the physical hardware, and allowing

processes to get information from each other using inter-process communication (IPC).

Each device that use touch screen has a driver, which is compiled into the Linux kernel. The

driver reads physical drivers and translates the data to events. These events are reported to

the Android lower layers.

There is a vast variety of touch screens available which are integrated into many touch

based devices. Each device has Linux kernel. For every such device a touch screen driver

must be implemented.

Android OS requires touchscreen driver of meeting certain criterias , (see figure 2- Events

which are potentially relevant to detecting FatTouch are marked)

FIGURE 2-ANDROID DEFINED REQUIREMENTS FOR THE DATA REPORTED BY A TOUCHSCREEN DRIVER ,
PARTIAL REQUIREMENTS LIST:

Our initial thought was to assist in ABS_TOUCH_MAJOR, ABS_TOUCH_MINOR,

ABS_WIDTH_MAJOR and ABS_WIDTH_MINOR for touch analysis. Unfortunately we found

out later that these values are not actually reported by the driver. Pressure event is

reported, and we elaborate on this property in the following chapters.

The device used for this project is Nexus7. The touch screen driver or this device is located at

/tegra/drivers/input/touchscreen/ektf3k.c.

The function responsible of reporting touch events:

 static void elan_ktf3k_ts_report_data(struct i2c_client *client, uint8_t *buf)

{
 struct elan_ktf3k_ts_data *ts = i2c_get_clientdata(client);

 struct input_dev *idev = ts->input_dev;

 uint16_t x, y, touch_size, pressure_size;

 uint16_t fbits=0, checksum=0;

 uint8_t i, num;

 static uint8_t size_index[10] = {35, 35, 36, 36, 37, 37, 38, 38, 39, 39};

 uint16_t active = 0;

 uint8_t idx=IDX_FINGER;

 num = buf[2] & 0xf;

 for (i=0; i<34;i++)

 checksum +=buf[i];

 if ((num < 3) || ((checksum & 0x00ff) == buf[34])) {

 fbits = buf[2] & 0x30;

 fbits = (fbits << 4) | buf[1];

 for(i = 0; i < FINGER_NUM; i++){

 active = fbits & 0x1;

 if(active || mTouchStatus[i]){

 input_mt_slot(ts->input_dev, i);

 input_mt_report_slot_state(ts->input_dev, MT_TOOL_FINGER, active);

 if(active){

 elan_ktf3k_ts_parse_xy(&buf[idx], &x, &y);

 x = x > ts->abs_x_max ? 0 : ts->abs_x_max - x;

 y = y > ts->abs_y_max ? ts->abs_y_max : y;

 touch_size = ((i & 0x01) ? buf[size_index[i]] : (buf[size_index[i]] >> 4)) & 0x0F;

 pressure_size = touch_size << 4; // shift left touch size value to 4 bits for max pressure value

255

 input_report_abs(idev, ABS_MT_TOUCH_MAJOR, touch_size);

 input_report_abs(idev, ABS_MT_PRESSURE, pressure_size);

 input_report_abs(idev, ABS_MT_POSITION_X, y);

 input_report_abs(idev, ABS_MT_POSITION_Y, x);

 if(unlikely(gPrint_point)) touch_debug(DEBUG_INFO, "[elan] finger id=%d X=%d

y=%d size=%d pressure=%d\n", i, x, y, touch_size, pressure_size);

 }

 }
 mTouchStatus[i] = active;

 fbits = fbits >> 1;

 idx += 3;

 }
 input_sync(idev);

 } // checksum

 else {
 checksum_err +=1;

 touch_debug(DEBUG_ERROR, "[elan] Checksum Error %d byte[2]=%X\n", checksum_err,

buf[2]);

 }

 return;

}

Reported data potentially relevant for FatTouch detection is marked.

After researching the possibility of integrating FatTouch detection at touch screen driver

we came to following conclusions:

- Adding FatTouch analysis to touch screen driver will requires adding a new input

event type. Each step of input processing system would need to recognize this event

and pass it to the next step respectively; thus requires changes at most of touch

reporting pipeline.

- Would harm performance- touch analysis here will cause major overhead.

Not all touch events reported by the driver are relevant to FatTouch detection.

Trying to detect FatTouch here would cause the driver to analyze each touch screen

event.

- Touch screen drivers are implemented for a variety of devices. Each driver

implementation would have to be changed to support FatTouch.

5.2- Android Native

From the Linux kernel the touch information proceeds to the Android Native layer.

The Android native input subsystem is made up of a series of C++ classes that forwards the

semi-processed information to the Java classes that completes the input system as an

Android framework. The input framework detects, filters, categorizes, and injects input

events into the currently running Activity or system component.

Input events are detected and read by the EventHub (see section 5.2.5).

The InputReader (section 5.2.3) continually acquires new events from the EventHub and

performs initial filtering and categorization on input events based on the device that event is

from. This essentially turns “raw” input events into “cooked” events. These “cooked” events

are then added to the InputDispatcher (section 5.2.4) queue. The InputDispatcher

continually publishes queued events to all valid input targets.

There can be multiple valid input targets listening for input events. These input targets can

range from the currently focused application or system component to system services that

are monitoring input events. Each valid input target at the time of event publishing is

notified through an InputQueue that it has received an input event. The InputQueue then

dispatches the input event to the InputHandler that has been registered with it. If the target

is an application, the InputHandler then dispatches the input event to the corresponding

View.

5.2.1 Starting up the input native pipeline

When Android first starts, the SystemServer is created. The SystemServer is designed to

launch all the major framework services. The SystemServer and all the framework

components it creates are written in Java. Each component that must communicate with

native C/C++ code either uses JNI (Java Native Interface) or Android’s Binder IPC mechanism.

To start the input framework, the SystemServer starts the WindowManagerService which in

turn creates the InputManager. The InputManager uses JNI to create a native class called the

NativeInputManager and provides callbacks to communicate with the Java InputManager.

The NativeInputManager is designed to be the connection between the Java InputManager

and the rest of the native input framework.

When instantiated, the NativeInputManager creates the EventHub along with the aptly

named InputManager. The (native) InputManager creates two threads, one for the

InputReader and one for the InputDispatcher. The InputReader thread reads and

preprocesses raw input events, applies policy, and posts messages to a queue managed by

the InputDispatcher, while the InputDispatcher thread waits for new events on the queue

and asynchronously dispatches them to applications.

5.2.2 InputManager

The InputManager is a simple class that creates the InputReader, InputDispatcher,

InputReaderThread and InputDispatcherThread. The InputReaderThread simply calls the

InputReader’s loopOnce() (see appendix) method forever. Similarly, the

InputDispatcherThread calls the InputDispatcher’s dispatchOnce method forever.

 5.2.3 InputReader

The role of the InputReader is to processes raw input events and to send the cooked event

data to an input dispatcher.

The InputReader continuously retrieves a raw event from the EventHub and processes it. It

keeps track of a list of devices that are currently connected along with their capabilities.

Each InputDevice has an associated InputMapper that helps map each raw input event from

an input device to a “cooked” event state that can be sent to the InputDispatcher. When an

InputDevice is created (after a new device is detected by the EventHub), it is assigned an

InputMapper based on the input device class reported by the EventHub. When that input

device produces input events, the events are given to the InputMapper for processing

before they are dispatched. After processing the raw input event, each InputMapper notifies

the InputDispatcher of its input event.

InputMapper examples:

- SwitchInputMapper- Maps switches such as the “lid switch”

- KeyboardInputMapper -Maps physical keyboards and buttons to key events

- TrackballInputMapper- Maps trackballs to motion events

- SingleTouchInputMapper -Maps single pointer touchscreens to motion events

(based on TouchInputMapper)

- MultiTouchInputMapper -Maps multi pointer touchscreens to motion events (based

on TouchInputMapper)

The InputMapper which is relevant to FatTouch is SingleTouchInputMapper.

In addition to processing input events, each InputMapper is responsible for reporting the

source class and source of an input event. Each of these constants are defined in both the

native code and in the Java code (in the InputDevice class).

The native constants are used by the InputReader and InputDispatcher

5.2.4 InputDispatcher

The InputDispatcher can be broken down into two main parts: one part continually reads

from the internal queue of “EventEntry” objects the other part adds entries to the internal

queue from the notify calls made by the InputReader.

Each time an event is removed from the internal queue, the current valid input targets are

determined. This includes the currently focused application, along with other viewable

windows or system components, and any system services monitoring input events. If the

event is a motion event, it is determined whether or not the event is within the bounds of

the focused window area, obscured area outside the focused application, or in the case of

multiple pointers (or touches) whether or not the motion event can be “split” across

multiple windows.

 Once the InputDispatcher determines how to handle the event, it dispatches the event to

each of the valid input targets. To do this, a “dispatch cycle” is prepared for each input

target. This sets up a Connection object with the input target and enqueues the event on the

connection’s outbound queue. When the dispatch cycle is started, the event is published to

the connection’s InputPublisher object. After the event has been published, a “dispatch

signal” is sent using the InputPublisher. This notifies the InputConsumer on the other side of

the connection that there is an event ready to be consumed. Once the event is consumed,

the InputConsumer sends a “finished signal” which is received by the InputPublisher. This

tells the InputDispatcher that this event was successfully consumed. The connection’s

outbound queue is checked for any additional events and the dispatch cycle is repeated.

When there are no more events on the connection’s outbound queue, the connection is

closed. This allows for events to be continually added to a connection’s outbound queue as

FIGURE 3-EVENT PROPAGATION BETWEEN C++ AND JAVA

long as it is still sending them without the Connection needing to be re-established (this is

referred to as event streaming).

5.2.5 EventHub.cpp

First class to access touch information is the EventHub. When a new input event is created in

/dev/input the EventHub determines if it is a device that is supported by Android by

checking its capabilities. If the device is supported, one or more input device classes are

assigned to the input device. The EventHub generates synthetic add/remove events

whenever a device has been connected or disconnected.

 A stream of events is detected and returned via the EventHub::getEvent() function (see

appenix). This is called by the InputReader and is guaranteed to be called by a single caller.

All input events are added to an input buffer which is read by getEvent(). This allows for

events to be retrieved from the devices that generated them in the order they occurred.

When there are no more events in the input buffer, getEvent() calls poll on the input device

file descriptors and waits for more input.

5.3 - Android low levels

All touch events are received at Android lower layers as instance of MotionEvent class.

MotionEvent class serves as a wrapper for events dispatched from Native Android. Motion

events describe movements in terms of an action code and a set of axis values. The action

code specifies the state change that occurred such as a pointer going down or up. The axis

values describe the position and other movement properties.

FIGURE 4-INPUT NATIVE FLOW

For example, when the user first touches the screen, the system delivers a touch event to

the appropriate View with the action code ACTION_DOWN and a set of axis values that

include the X and Y coordinates of the touch and information about the pressure, size and

orientation of the contact area.

Some devices can report multiple movement traces at the same time. Multi-touch screens

emit one movement trace for each finger. The individual fingers or other objects that

generate movement traces are referred to as pointers. Motion events contain information

about all of the pointers that are currently active even if some of them have not moved

since the last event was delivered.

The number of pointers only ever changes by one as individual pointers go up and down,

except when the gesture is canceled.

Each pointer has a unique id that is assigned when it first goes down (indicated

by ACTION_DOWN or ACTION_POINTER_DOWN). A pointer id remains valid until the pointer

eventually goes up (indicated by ACTION_UP or ACTION_POINTER_UP) or when the gesture

is canceled (indicated by ACTION_CANCEL).

Touch resolution is performed at ACTION_UP or ACTION_POINTER_UP motion event with an

exception of Long Press touch timeout expiration.

The MotionEvent class provides many methods to query the position and other properties of

pointers, such as getX(int), getY(int), getAxisValue(int), getPointerId(int), getToolType(int),

and many others. Most of these methods accept the pointer index as a parameter rather

than the pointer id. The pointer index of each pointer in the event ranges from 0 to one less

than the value returned by getPointerCount().

After motionEvent is generated, it is passed to relevant View class, and the view’s

OnTouchEvent method invoked.

View class represents the basic building block for user interface components. A View

occupies a rectangular area on the screen and is responsible for drawing and event handling.

View is the base class for widgets, which are used to create interactive UI components

(buttons, text fields, etc.). The ViewGroup subclass is the base class for layouts, which are

invisible containers that hold other Views (or other ViewGroups) and define their layout

properties.

All user interface elements in an Android app are built using View and ViewGroup objects.

5.3.1 Application usage of touch events

Applications use touch to interact with users. In order to create flow for certain touch

events, application developers need to intercept and analyze them. The UI layout is

comprised of several View and VewGroup classes. Each ViewGroup can contain several

ViewGoup or View classes thus creating hierarchy of user interface components.

http://developer.android.com/reference/android/view/MotionEvent.html#ACTION_DOWN
http://developer.android.com/reference/android/view/MotionEvent.html#ACTION_DOWN
http://developer.android.com/reference/android/view/MotionEvent.html#ACTION_POINTER_DOWN
http://developer.android.com/reference/android/view/MotionEvent.html#ACTION_UP
http://developer.android.com/reference/android/view/MotionEvent.html#ACTION_POINTER_UP
http://developer.android.com/reference/android/view/MotionEvent.html#ACTION_CANCEL
http://developer.android.com/reference/android/view/MotionEvent.html#ACTION_UP
http://developer.android.com/reference/android/view/MotionEvent.html#ACTION_POINTER_UP
http://developer.android.com/reference/android/view/MotionEvent.html#getX(int)
http://developer.android.com/reference/android/view/MotionEvent.html#getY(int)
http://developer.android.com/reference/android/view/MotionEvent.html#getAxisValue(int)
http://developer.android.com/reference/android/view/MotionEvent.html#getPointerId(int)
http://developer.android.com/reference/android/view/MotionEvent.html#getToolType(int)
http://developer.android.com/reference/android/view/MotionEvent.html#getPointerCount()
http://developer.android.com/reference/android/view/ViewGroup.html

When a user touches screen of the device, an ACTION_DOWN event is sent to the View class

in which the touch occurred. This class can decide if it is interested in receiving the rest of

events related to this touch (e.g. changes in position, pressure etc.). In order to be able to

decide, the class needs to override onTouchEvent(MotionEvent e) method. In case the view

is interested in rest of the events, it shall return true. If some View or ViewGroup class

returns true for onTouchEvent(MotionEvent e) ,classes above it will not receive the event.

For example, if we have the following layout:

The touch occurred at the red circle. As the touch occurs, View C receives a MotionEvent of

ACTION_DOWN. If View is interested in rest of events regarding this touch, it would return

true in onTouchEvent(MotionEvent e). If View C is interested in such events, upper layers of

the UI will not receive the event.

Each event contains information regarding the touch- location, pressure, size etc. View class

which is interested in certain touch events can analyze them or use GestureDetector class

for detecting gestures.

 Since every touch event is processed in View.onTouchEvent() it is possible to add FatTouch

resolution at the View class, but this method is very unpractical. Every application that

overrides View.onTouchEvent method, will not be able to use current FatTouch resolution

implementation. Thus such applications are forced either to use the whole onTouchEvent

method, or implement the resolution in its source code. In other words, FatTouch is not

modular enough for an easy use.

5.4 Android Framework and Gestures

Touchscreens of touch based devices, such as the iPad, utilize multi-touch technology,

with gestures acting as the main form of user interface. Many touchpads, which in

laptops replace the traditional mouse, have similar gesture support. For example, a

common gesture is to use two fingers in a downwards or upwards motion to scroll the

currently active page. The rising popularity of touchscreen interfaces has led to gestures

becoming a more standard feature in computing. An increasing number of products like

smartphones, tablets, laptops or desktop computers have functions that are triggered by

multi-touch gestures.

5.4.1 Gesture detector

Android provides the GestureDetector class for detecting common gestures.

Currently this class provides detection of the following gestures: Scroll, Long press, Fling

and Double Tap.

Nested Classes

The use of the GestureDetector is through its nested interfaces and classes, an

application has to implement or override.

interface GestureDetector.OnContextClickListener The listener that is used to notify when a

 context click occurs.

interface GestureDetector.OnDoubleTapListener The listener that is used to notify when a

double-tap or a confirmed single-tap

occur.

interface GestureDetector.OnGestureListener The listener that is used to notify when

gestures occur

class GestureDetector.SimpleOnGestureListener A convenience class to extend when you

only want to listen for a subset of all the

gestures.

5.4.1.1 Usage

To use GestureDetector, we need to do 3 things

Use of GestureDetector is accomplished by:

http://developer.android.com/reference/android/view/GestureDetector.html
http://developer.android.com/reference/android/view/GestureDetector.OnContextClickListener.html
http://developer.android.com/reference/android/view/GestureDetector.OnDoubleTapListener.html
http://developer.android.com/reference/android/view/GestureDetector.OnGestureListener.html
http://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureListener.html
http://developer.android.com/reference/android/view/GestureDetector.html

- Implementing Listeners

- Overriding all the callback methods of listener interface

- Binding the GestureDetector to gesture listener

5.4.1.2 Implementing Listeners and Overriding methods

The first thing to do in order to start detecting the gesture events is to implement the

listeners. There are 2 ways to do that:

1. Make our Activity class implement GestureDetector.OnDoubleTapListener (for

double tap gesture detection) and GestureDetector.OnGestureListener interfaces

and implement all the abstract methods.

2. Write a custom class as a nested class of our Activity or some other external

class that extends the aforementioned interfaces or extends the

GestureDetector.SimpleOnGestureListener class. The advantage

of SimpleOnGestureListener nested class is that it implements all the methods

from those 2 interfaces but does nothing. So if we want to deal with and process

only a few (subset) gestures then we can take this approach.

Example of the 1st approach:

class CustomGestureDetector implements

GestureDetector.OnGestureListener,

GestureDetector.OnDoubleTapListener {

 @Override

 public boolean onSingleTapConfirmed(MotionEvent e) {

 mGestureText.setText("onSingleTapConfirmed");

 return true;

 }

 @Override

 public boolean onDoubleTap(MotionEvent e) {

 mGestureText.setText("onDoubleTap");

 return true;

 }

 @Override

 public boolean onDoubleTapEvent(MotionEvent e) {

 mGestureText.setText("onDoubleTapEvent");

 return true;

 }

 @Override

http://developer.android.com/reference/android/view/GestureDetector.OnDoubleTapListener.html
http://developer.android.com/reference/android/view/GestureDetector.OnGestureListener.html
http://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureListener.html

 public boolean onDown(MotionEvent e) {

 mGestureText.setText("onDown");

 return true;

 }

 @Override

 public void onShowPress(MotionEvent e) {

 mGestureText.setText("onShowPress");

 }

 @Override

 public boolean onSingleTapUp(MotionEvent e) {

 mGestureText.setText("onSingleTapUp");

 return true;

 }

 @Override

 public boolean onScroll(MotionEvent e1, MotionEvent e2, float

 distanceX, float distanceY) {

 mGestureText.setText("onScroll");

 return true;

 }

 @Override

 public void onLongPress(MotionEvent e) {

 mGestureText.setText("onLongPress");

 }

 @Override

 public boolean onFling(MotionEvent e1, MotionEvent e2, float

 velocityX, float velocityY) {

 mGestureText.setText("onFling");

 return true;

 }

}

5.4.1.3 Binding

Next steps are to create a GestureDetector object and attach the listener objects to it.

This will can be done in the onCreate() method of an Activity class:

private TextView mGestureText;

private GestureDetector mGestureDetector;

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_gesture);

 mGestureText = (TextView) findViewById(R.id.gestureStatus);

 // Create an object of our Custom Gesture Detector Class

 CustomGestureDetector customGestureDetector = new

CustomGestureDetector();

 // Create a GestureDetector

 mGestureDetector = new GestureDetector(this,

customGestureDetector);

 // Attach listeners that'll be called for double-tap and

related gestures

mGestureDetector.setOnDoubleTapListener(customGestureDetector);

}

Implementing onTouchEvent()

The gesture detectors won’t fire yet. This is because the touch events are not yet re-

routed to the gesture detectors. In order to do that, onTouchEvent() of the Activity must

be overridden.

@Override

public boolean onTouchEvent(MotionEvent event) {

 mGestureDetector.onTouchEvent(event);

 return super.onTouchEvent(event);

}

5.4.2 FatTouch and Gestures

In the beginning of the project, our perception of FatTouch was as of a separate kind of

input, as much as touching the screen with a finger, or with a pointer tool are different types

of input, but after we became familiar with the whole android input system - Gesture

detector in particular we changed our approach.

 Long press is a gesture we found to have a certain similarity to Fat Touch – both of these

touches are performed with one finger, and both do not involve movement of the finger on

the screen surface. This led us to understanding that Fat touch can be also perceived as a

gesture. This approach has a number of clear benefits and we will present them in section

5.5 .

5.5 Implementation

After we grasped the android touch input system in its whole, from physical touch driver to

the application layer, we came to a conclusion regarding the most suitable place to insert

FatTouch detection and resolution

× Linux Driver

Time consuming, all Linux kernels need to be changed. Will affect the whole input

pipeline

× Android Native

Suffers from the same problem as implementation at Linux driver. Might suffer even

larger overhead since here the classes handle all types of events.

× Low level

Forces application developers wanting the option of FatTouch, also to use

View.onTouchEvent ()

 Framework-

Implementing FatTouch here, allows developers a modular usage of FatTouch. Using

FatTouch here will not harm performance.

Another important benefit, is the similarity of use between FatTouch and another

gestures.

We came to conclusion that integrating FatTouch into the GestureDetector is the optimal

solution

5.5.1 Resolving FatTouch

We needed to find characteristics which distinguish the FatTouch from regular touch.

We printed all touch events characteristics to the android log, for each touch event

occurred.

From the first look couple of features stood out- touch size and pressure. For further and

more precise analysis we used a group of people. Each person performed 100 regular and

100 FatTouches.

It became apparent that pressure and size have much higher values for FatTouch. The

difference in size value between regular and fat touch was an expected result, as the

FatTouch is a touch of a full thumb, and for obvious reasons it has a bigger touch size. On the

other hand, the difference in pressure value was a surprise, since even for a light Fat touch

the value was much higher than regular touch.

Based on these results, it became obvious that our problem of FatTouch resolution can be

reduced to a statistical classification problem.

5.5.1.1 SVM

In machine learning, support vector machines (SVM, also support vector networks)

are supervised learning models with associated learning algorithms that analyze data used

for classification and regression analysis. Given a set of training examples, each marked for

belonging to one of two categories, an SVM training algorithm builds a model that assigns

new examples into one category or the other, making it a non-probabilistic binary linear

classifier.

An SVM model is a representation of the examples as points in space, mapped so that the

examples of the separate categories are divided by a clear gap that is as wide as possible.

New examples are then mapped into that same space and predicted to belong to a category

based on which side of the gap they fall on.

Given two categories of point sets, there are multiple ways to divide the space into the two

categories, so each point in this given space will fall into one and only category. In our case

we have two dimensional space, in which the axis are touch size and touch pressure. SVM

offers an optional solution in a sense that it finds the dividing line (hyperplane), which is as

far as possible from its nearest points. This way the categorization will be less noise

sensitive, and abnormal measurements will still stay in the right class.

SVM Linear Algorithm

Let’s introduce the notation used to define formally a hyperplane:

where is known as the weight vector and as the bias.

The optimal hyperplane can be represented in an infinite number of different ways by

scaling of and . As a matter of convention, among all the possible representations of the

hyperplane, the one chosen is

where symbolizes the training examples closest to the hyperplane. In general, the training

examples that are closest to the hyperplane are called support vectors. This representation

is known as the canonical hyperplane.

Now, we use the result of geometry that gives the distance between a point and a

hyperplane :

In particular, for the canonical hyperplane, the numerator is equal to one and the distance

to the support vectors is

Recall that the margin introduced in the previous section, here denoted as , is twice the

distance to the closest examples:

Finally, the problem of maximizing is equivalent to the problem of minimizing a

function subject to some constraints. The constraints model the requirement for the

hyperplane to classify correctly all the training examples . Formally,

where represents each of the labels of the training examples.

This is a problem of Lagrangian optimization that can be solved using Lagrange multipliers to

obtain the weight vector and the bias of the optimal hyperplane.

5.5.1.2 SVM FatTouch Resolution

The most critical conclusion from our perspective is the fact that if the two sets of points

cannot be separated (and are in fact belong to the same category), the SVM algorithm will

not converge, and no solution will be offered.

Using MatLab, we defined two vectors- Regular touch and fat touch. We applied SVMTRAIN

MatLab function on the vectors and got the following results:

FIGURE 5 - SVM RESULTS

Where Red marks are FatTouches, and green marks are regular. X axis are touch size and Y

axis are touch pressure.

 Here it will be a good place to mention that the high pressure values in regular touches

were received when the user deliberately applied force to the touch.

From the graph it is clear that in fact, FatTouch and regular touch features can be separated

into two categories.

From the results of SVM we came to a conclusion that pressure feature might be sufficient

for detecting FatTouch. In order to avoid as much as possible relying on the size of the

thumb, since it varies depending on person’s age height etc., we tested the FatTouch while

examining pressure only.

5.5.2 Implementation in GestureDetector

Our implementation of FatTouch detector was added to the GestureDetector class in a way

that is in line with the current Android structure, and so the implementation was integrated

in a natural way with the android framework and GestureDetector class.

We have added an interface OnFatTouchListener to GestureDetector.java,

 public interface OnFatTouchListener{

 boolean OnFatTouch(MotionEvent) {

}

Now nested classes of GestureDetector look like that

interface GestureDetector.OnContextClickListener The listener that is used to notify when a

 context click occurs.

interface GestureDetector.OnDoubleTapListener The listener that is used to notify when a

double-tap or a confirmed single-tap

occur.

interface GestureDetector.OnGestureListener The listener that is used to notify when

gestures occur

class GestureDetector.SimpleOnGestureListener A convenience class to extend when you

only want to listen for a subset of all the

gestures.

interface GestureDetector.OnFatTouchListener The listener that is used to notify when

Fattouch occur

We added a member of the interface to the GestureDetector

 private final Handler mHandler;

 private final OnGestureListener mListener;

 private OnDoubleTapListener mDoubleTapListener;

 private OnContextClickListener mContextClickListener;

 private OnFatTouchListener mOnFatTouchListener;

We added FatTouch resolution to the onTouchEvent() function

http://developer.android.com/reference/android/view/GestureDetector.OnContextClickListener.html
http://developer.android.com/reference/android/view/GestureDetector.OnDoubleTapListener.html
http://developer.android.com/reference/android/view/GestureDetector.OnGestureListener.html
http://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureListener.html

Lastly we added a function

public void setOnFatTouchListener(OnFatTouchListener

onFatTouchListener) {

 mDoubleTapListener = onFatTouchListener;

 }

The usage of FatTouch, is identical to the usage of the other gestures.

In order to handle FatTouch event, the application will need to implement

OnFatTouchListener interface, and use gestureDetector’s setOnFatTouchListener function in

order to register for the events.

5.6 Proof of Concept

After integrating FatTouch in GestureDetector class, we have created an example

application. The application is based on one of example applications available in the Android

SDK. We altered an application which performs image manipulation. On FatTouch, the image

is changed between fisheye and negative, while in long press it changes back to the original

image.

Instantiation of GestureDetector and OnFatTouchListener:

Implementation of OnFatTouchListener:

The application was tested by several people, each of them successfully used the FatTouch

feature.

6. Conclusions

During our work, we have considered adding FatTouch detection and resolution to several

stages in the input pipeline. The stage we found most suitable is the GestureDetector class

located in the android framework.

This solution offers number of benefits. It has backwards computability and will not harm

any applications using motion events, view and GestureDetector. It is aligned with the

current android architecture, and naturally blends with the other existing gestures (such as

long press). There is almost no overhead at all, in adding FatTouch to GestureDetector.

Furthermore our implementation of FatTouch resolution is very easy to use for any

application developer

We had succeeded in our goal of identifying FatTouch. The FatTouch feture was integrated

into an existing application and successfully tested by several people!

We believe that FatTouch is a useful feature, and can promote developing diverse

applications.

8. Bibliography

[1] http://codetheory.in/android-gesturedetector/

[2] - Andrew Hughes , the Faculty of California Polytechnic State University. ACTIVE PEN

INPUT AND THE ANDROID INPUT FRAMEWORK, 2011

[3] http://developer.android.com/guide/index.html

[4] https://en.wikipedia.org/

[5] http://balpha.de/2013/07/android-development-what-i-wish-i-had-known-earlier/

[6] http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

http://codetheory.in/android-gesturedetector/
http://developer.android.com/guide/index.html
https://en.wikipedia.org/
http://balpha.de/2013/07/android-development-what-i-wish-i-had-known-earlier/

7. APPENDIX

7.1 EventHub.getEvent()
bool EventHub::getEvent(RawEvent* outEvent) {

 outEvent->deviceId = 0;

 outEvent->type = 0;

 outEvent->scanCode = 0;

 outEvent->keyCode = 0;

 outEvent->flags = 0;

 outEvent->value = 0;

 outEvent->when = 0;

 // Note that we only allow one caller to getEvent(), so don't

need

 // to do locking here... only when adding/removing devices.

 if (!mOpened) {

 mError = openPlatformInput() ? NO_ERROR : UNKNOWN_ERROR;

 mOpened = true;

 mNeedToSendFinishedDeviceScan = true;

 }

 for (;;) {

 // Report any devices that had last been added/removed.

 if (mClosingDevices != NULL) {

 Device* device = mClosingDevices;

 LOGV("Reporting device closed: id=%d, name=%s\n",

 device->id, device->path.string());

 mClosingDevices = device->next;

 if (device->id == mBuiltInKeyboardId) {

 outEvent->deviceId = 0;

 } else {

 outEvent->deviceId = device->id;

 }

 outEvent->type = DEVICE_REMOVED;

 outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);

 delete device;

 mNeedToSendFinishedDeviceScan = true;

 return true;

 }

 if (mOpeningDevices != NULL) {

 Device* device = mOpeningDevices;

 LOGV("Reporting device opened: id=%d, name=%s\n",

 device->id, device->path.string());

 mOpeningDevices = device->next;

 if (device->id == mBuiltInKeyboardId) {

 outEvent->deviceId = 0;

 } else {

 outEvent->deviceId = device->id;

 }

 outEvent->type = DEVICE_ADDED;

 outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);

 mNeedToSendFinishedDeviceScan = true;

 return true;

 }

 if (mNeedToSendFinishedDeviceScan) {

 mNeedToSendFinishedDeviceScan = false;

 outEvent->type = FINISHED_DEVICE_SCAN;

 outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);

 return true;

 }

 // Grab the next input event.

 for (;;) {

 // Consume buffered input events, if any.

 if (mInputBufferIndex < mInputBufferCount) {

 const struct input_event& iev =

mInputBufferData[mInputBufferIndex++];

 const Device* device = mDevices[mInputFdIndex];

 LOGV("%s got: t0=%d, t1=%d, type=%d, code=%d, v=%d",

device->path.string(),

 (int) iev.time.tv_sec, (int) iev.time.tv_usec,

iev.type, iev.code, iev.value);

 if (device->id == mBuiltInKeyboardId) {

 outEvent->deviceId = 0;

 } else {

 outEvent->deviceId = device->id;

 }

 outEvent->type = iev.type;

 outEvent->scanCode = iev.code;

 outEvent->flags = 0;

 if (iev.type == EV_KEY) {

 outEvent->keyCode = AKEYCODE_UNKNOWN;

 if (device->keyMap.haveKeyLayout()) {

 status_t err = device->keyMap.keyLayoutMap-

>map(iev.code,

 &outEvent->keyCode, &outEvent-

>flags);

 LOGV("iev.code=%d keyCode=%d flags=0x%08x

err=%d\n",

 iev.code, outEvent->keyCode,

outEvent->flags, err);

 }

 } else {

 outEvent->keyCode = iev.code;

 }

 outEvent->value = iev.value;

 // Use an event timestamp in the same timebase as

 // java.lang.System.nanoTime() and

android.os.SystemClock.uptimeMillis()

 // as expected by the rest of the system.

 outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);

 return true;

 }

 // Finish reading all events from devices identified in

previous poll().

 // This code assumes that mInputDeviceIndex is initially

0 and that the

 // revents member of pollfd is initialized to 0 when the

device is first added.

 // Since mFds[0] is used for inotify, we process regular

events starting at index 1.

 mInputFdIndex += 1;

 if (mInputFdIndex >= mFds.size()) {

 break;

 }

 const struct pollfd& pfd = mFds[mInputFdIndex];

 if (pfd.revents & POLLIN) {

 int32_t readSize = read(pfd.fd, mInputBufferData,

 sizeof(struct input_event) *

INPUT_BUFFER_SIZE);

 if (readSize < 0) {

 if (errno != EAGAIN && errno != EINTR) {

 LOGW("could not get event (errno=%d)",

errno);

 }

 } else if ((readSize % sizeof(struct input_event)) !=

0) {

 LOGE("could not get event (wrong size: %d)",

readSize);

 } else {

 mInputBufferCount = size_t(readSize) /

sizeof(struct input_event);

 mInputBufferIndex = 0;

 }

 }

 }

#if HAVE_INOTIFY

 // readNotify() will modify mFDs and mFDCount, so this must

be done after

 // processing all other events.

 if(mFds[0].revents & POLLIN) {

 readNotify(mFds[0].fd);

 mFds.editItemAt(0).revents = 0;

 continue; // report added or removed devices immediately

 }

#endif

 mInputFdIndex = 0;

 // Poll for events. Mind the wake lock dance!

 // We hold a wake lock at all times except during poll().

This works due to some

 // subtle choreography. When a device driver has pending

(unread) events, it acquires

 // a kernel wake lock. However, once the last pending event

has been read, the device

 // driver will release the kernel wake lock. To prevent the

system from going to sleep

 // when this happens, the EventHub holds onto its own user

wake lock while the client

 // is processing events. Thus the system can only sleep if

there are no events

 // pending or currently being processed.

 release_wake_lock(WAKE_LOCK_ID);

 int pollResult = poll(mFds.editArray(), mFds.size(), -1);

 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);

 if (pollResult <= 0) {

 if (errno != EINTR) {

 LOGW("poll failed (errno=%d)\n", errno);

 usleep(100000);

 }

 }

 }

}

7.2 InputDispatcher.dispatchOnce()

void InputDispatcher::dispatchOnce() {

 nsecs_t nextWakeupTime = LONG_LONG_MAX;

 { // acquire lock

 AutoMutex _l(mLock);

 mDispatcherIsAliveCondition.broadcast();

 // Run a dispatch loop if there are no pending commands.

 // The dispatch loop might enqueue commands to run afterwards.

 if (!haveCommandsLocked()) {

 dispatchOnceInnerLocked(&nextWakeupTime);

 }
 // Run all pending commands if there are any.

 // If any commands were run then force the next poll to wake up immediately.

 if (runCommandsLockedInterruptible()) {

 nextWakeupTime = LONG_LONG_MIN;

 }
 } // release lock

 // Wait for callback or timeout or wake. (make sure we round up, not down)

 nsecs_t currentTime = now();

 int timeoutMillis = toMillisecondTimeoutDelay(currentTime, nextWakeupTime);

 mLooper->pollOnce(timeoutMillis);

}

7.3 InputReader::loopOnce()

void InputReader::loopOnce() {

 int32_t oldGeneration;

 int32_t timeoutMillis;

 bool inputDevicesChanged = false;

 Vector<InputDeviceInfo> inputDevices;

 { // acquire lock

 AutoMutex _l(mLock);

 oldGeneration = mGeneration;

 timeoutMillis = -1;

 uint32_t changes = mConfigurationChangesToRefresh;

 if (changes) {

 mConfigurationChangesToRefresh = 0;

 timeoutMillis = 0;

 refreshConfigurationLocked(changes);

 } else if (mNextTimeout != LLONG_MAX) {

 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);

 timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout);

 }
 } // release lock

 size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE);

 { // acquire lock

 AutoMutex _l(mLock);

 mReaderIsAliveCondition.broadcast();

 if (count) {

 processEventsLocked(mEventBuffer, count);

 }
 if (mNextTimeout != LLONG_MAX) {

 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);

 if (now >= mNextTimeout) {

#if DEBUG_RAW_EVENTS

 ALOGD("Timeout expired, latency=%0.3fms", (now - mNextTimeout) * 0.000001f);

#endif

 mNextTimeout = LLONG_MAX;

 timeoutExpiredLocked(now);

 }

 }
 if (oldGeneration != mGeneration) {

 inputDevicesChanged = true;

 getInputDevicesLocked(inputDevices);

 }
 } // release lock

 // Send out a message that the describes the changed input devices.

 if (inputDevicesChanged) {

 mPolicy->notifyInputDevicesChanged(inputDevices);

 }
 // Flush queued events out to the listener.

 // This must happen outside of the lock because the listener could potentially call

 // back into the InputReader's methods, such as getScanCodeState, or become blocked

 // on another thread similarly waiting to acquire the InputReader lock thereby

 // resulting in a deadlock. This situation is actually quite plausible because the

 // listener is actually the input dispatcher, which calls into the window manager,

 // which occasionally calls into the input reader.

 mQueuedListener->flush();

}

7.4 View.onTouchEvent(MotionEvent event

public Boolean onTouchEvent(MotionEvent event) {

 final int viewFlags = mViewFlags;

 if ((viewFlags & ENABLED_MASK) == DISABLED) {

 // A disabled view that is clickable still consumes the touch

 // events, it just doesn't respond to them.

 return (((viewFlags & CLICKABLE) == CLICKABLE ||

 (viewFlags & LONG_CLICKABLE) == LONG_CLICKABLE));

 }

 if (mTouchDelegate != null) {

 if (mTouchDelegate.onTouchEvent(event)) {

 return true;

 }

 }

 if (((viewFlags & CLICKABLE) == CLICKABLE ||

 (viewFlags & LONG_CLICKABLE) == LONG_CLICKABLE)) {

 switch (event.getAction()) {

 case MotionEvent.ACTION_UP:

 if ((mPrivateFlags & PRESSED) != 0) {

 // take focus if we don't have it already and we should in

 // touch mode.

 boolean focusTaken = false;

 if (isFocusable() && isFocusableInTouchMode() && !isFocused()) {

 focusTaken = requestFocus();

 }

 if (!mHasPerformedLongPress) {

 // This is a tap, so remove the longpress check

 if (mPendingCheckForLongPress != null) {

 removeCallbacks(mPendingCheckForLongPress);

 }

 // Only perform take click actions if we were in the pressed state

 if (!focusTaken) {

 performClick();

 }

 }

 if (mUnsetPressedState == null) {

 mUnsetPressedState = new UnsetPressedState();

 }

 if (!post(mUnsetPressedState)) {

 // If the post failed, unpress right now

 mUnsetPressedState.run();

 }

 }

 break;

 case MotionEvent.ACTION_DOWN:

 mPrivateFlags |= PRESSED;

 refreshDrawableState();

 if ((mViewFlags & LONG_CLICKABLE) == LONG_CLICKABLE) {

 postCheckForLongClick();

 }

 break;

 case MotionEvent.ACTION_CANCEL:

 mPrivateFlags &= ~PRESSED;

 refreshDrawableState();

 break;

 case MotionEvent.ACTION_MOVE:

 final int x = (int) event.getX();

 final int y = (int) event.getY();

 // Be lenient about moving outside of buttons

 int slop = ViewConfiguration.get(mContext).getScaledTouchSlop();

 if ((x < 0 - slop) || (x >= getWidth() + slop) ||

 (y < 0 - slop) || (y >= getHeight() + slop)) {

 // Outside button

 if ((mPrivateFlags & PRESSED) != 0) {

 // Remove any future long press checks

 if (mPendingCheckForLongPress != null) {

 removeCallbacks(mPendingCheckForLongPress);

 }

 // Need to switch from pressed to not pressed

 mPrivateFlags &= ~PRESSED;

 refreshDrawableState();

 }

 } else {
 // Inside button

 if ((mPrivateFlags & PRESSED) == 0) {

 // Need to switch from not pressed to pressed

 mPrivateFlags |= PRESSED;

 refreshDrawableState();

 }

 }

 break;

 }

 return true;

 }

 return false;

 }

7.5 Table of Figure

Figure 1- Android Main components .. 3

Figure 2-Android defined requirements for the data reported by a touchscreen driver ,

partial requirements list: ... 6

Figure 3-event propagation between c++ and java... 10

Figure 4-input NATIVE FLOW ... 11

Figure 5 - SVM results ... 21

file:///C:/Users/mvalersh/Documents/school/פרויקט/Book.docx%23_Toc444973447
file:///C:/Users/mvalersh/Documents/school/פרויקט/Book.docx%23_Toc444973448

