Binary Similarity Using ML

Noam Shalev Nimrod Partush

Technion — Israel Institute of Technology

Motivation

» Vulnerability Search

A O

Security Officer

Motivation

» Copyright infringement

But how can
| be sure?

We do not use
licensed code in
our products !

Startup CEO

Motivation

» Guest protection in cloud setting
» Scan memory of guest machines

» Without inquiring guest data

App | App | App | App | App | App | App | App

&SMOBMOIBM O™ O

¥ Hypervisor .

Motivation

» Vulnerability Search
» Copyright infringement
» VM protection

4‘—

NENp .
TIT] / Microsoft
ﬁ v? rg'grﬁgersl A Azure

£Y Google Cloud

Problem Definition

» Find the same code section after it has been compiled differently
» And stripped

mov r9, 13h
shr eax, 8 mov ri2, rbx
lea r14d, [r12+13h] P, ° ’
add rbp, 3
mov ri3, rbx = nov rsi, rbp
lea rcx, [ri13+3 ?
> L] ~ lea rdi, [r12+3]
mov [r13+1], al ~
mov [r12+2], bl
mov [r13+2], rl2b
. lea rl3d, [rcx+r9]
mov rdi, rcx
shr eax, 8

Heartbleed(), gcc v.4.9 -03 Heartbleed(), clang v.3.5 -03

Similarity Wish-List

» Precise
» Avoid false positives

» Flexible - find similarities across

» Compiler versions gcc-4.7 vs.
» Compiler vendors gcc-4.8 vs.
» Optimization levels gcc-4.8-00 vs.

» Different versions of the same code

» Work on stripped binaries (no debug info)

gcc-5.0
icc-15
icc-15-03

Algorithm Outline

Input Procedure 1

shr
mov
lea
mov
mov
mov

eax, 4

r8, rbx

rcx, [r8+3]
[r8+1], al
[r8+2], rl2b
rdi, rcx

Transformation
to Vector

Input Procedure 2

shr
mov
lea
mov
mov
mov

edx, 4

rl3, rbx

rex, [rl13+3]
rdi, rcx
[r13+1], dl
[r13+2], rlOb

Transformation
to Vector

—> P(Similar)

Similarity by Composition

» Similarity principle [Irani et al. 2006]

> Two signals are similar if one can
“compose one signal from large contiguous chunks of the second signal”

Code Decomposition

» Strand

» Set of instructions required to compute the value of a certain variable

shr eax, 4

mov r8, rbx

lea rcx, [r8+3]

mov [r8+1], al

mov [r8+2], rl2b

mov rdi, rcx
mov r8, rbx oV r8. rbx shr eax, 4
lea rcx, [r8+3] > mov r8, rbx

mov

rdi, rcx

mov

[r8+2], rl3b

mov

[r8+1], al

10

Code Decomposition

» Strand
» Set of instructions required to compute the value of a certain variable

shr eax, 4

mov r8, rbx

lea rcx, [r8+3]
mov [r8+1], al
mov [r8+2], rl2b
mov rdi, rcx

» Not necessarily contiguous
» Syntactically different strands can be equivalent

Similarity of Binaries

» Statistical similarity of binaries [David et al. 2016]
1. Decomposition
2. Pairwise semantic similarity
3. Statistical similarity evidence

» Slow
» ~ 20 seconds / comparison

We need a faster & scalable solution

12

Strands as Features

» Previous work used human-crafted features:
- # of instructions / branches / calls
- # of appearances of each assembly mnemonic
- Specific numerical values

» We propose strands for representing code sections
- Harder to see in human eyes

Just like

13

Strands as Features

» Challenge: determining equivalence requires a solver
» Equivalent strands might look differently

3 '@ ‘& “&

» Idea: bring strands to a normalized form
» In terms of textual representation

» Requires some preprocessing

14

Introducing Proc2Vec

» Proc2vec - procedure to vector transformation algorithm

» Given a procedure, split to basic blocks

> For each basic block

> Decompose to strands

mov r8, rbx
lea rcx, [r8+3]
mov rdi, rcx

shr
mov
lea
mov
mov
mov

eax, 4

r8, rbx

rcx, [r8+3]
[r8+1], al
[r8+2], rl2b
rdi, rcx

mov
mov

r8, rbx
[r8+2], rl3b

shr
mov
mov

eax, 4
r8, rbx
[r8+1], al

15

Introducing Proc2Vec

. . . . 1 =
> Lift to intermediate representation V2 i- eato3a(vi)
v :=v2 / 16
vl = rbx rax := v3

vl := rbx r8 := vi v4 = rbx

: o s s o

:ix .; 52 "e XZ : ﬁgto8(v2) v6 := 64to8(v5)

V3 1= rex V5 = V4 + 2 R . ri3

rdi := v3 M[v5] := v3 J?V8j=.z7vg 1
o Optimize

rdi := rbx+3 M[rbx+2] := 64to8(ri3) M[r13+1] := 64to8(64to32(rax)/16)
> Normalize

t1 (= t2 + 3 M[t1+2] := 64to8(t2) M[t1l] := 64to8(64to32(t2)/16)

Introducing Proc2Vec

> Transform text to numbers by applying b-bit Md5 hash

t1 := t2 + 3 M[t1+2] := 64to8(t2) M[t1l] := 64to8(64t032(t2)/16)
Y Y Y
157 1223 19

o Assemble the numbers into a vector

v[o:2> - 1] = (0,..,0,1,0,..,0,1,0,..,0,1,0, ..., 0)

t t)

Index Index Index
19 157 1223

Algorithm Outline

Input Procedure 1

shr
mov
lea
mov
mov
mov

eax, 4

r8, rbx

rcx, [r8+3]
[r8+1], al
[r8+2], rl2b
rdi, rcx

Input Procedure 2

proc2vec

shr
mov
lea
mov
mov
mov

edx, 4

rl3, rbx

rcx, [rl3+3]
rdi, rcx
[r13+1], dl
[r13+2], rlOb

proc2vec

—> P(Similar)

18

Designing NN Predictor

» Dataset:
> Open source projects from various fields:

- OpenSSL, binutils, bash, httpd, ntp, cURL, Snort, Git, ...

> Compiled using various
- Compiler vendors (gcc, icc, Clang)
- Compiler versions
* Optimization levels (-0{0,1,2,3,s})
- Target architectures (x86_64, AArch64)

> Qverall ~1 Million procedures

19

Designing NN Predictor

» Challenges:
o Similarity is symmetric
» Generate symmetric data

(x,y) = (x,x), (x,y), v, x), v, y)

> Procedures mostly don’t match
» Generate unbalanced dataset

match 1 . 6 nonmatch

> A predictor that always predict nonmatch gets high accuracy
» Use CROC for measuring accuracy

20

Designing NN Predictor

» Parameter tuning:
> Train over 500K examples
= Variable hash size
= Variable number of hidden layers
= Variable layer sizes

= Variable regularization values

Hash size

Layers

21

Designing NN Predictor

» Parameter tuning:

> Train over 500K examples
= Variable hash size

» Choose 10

=
©
St

<
©

0.85

)
S
=
S
)
S
&
e
£
o)
z
5
S
3
@)

== tar
coreutils
=@= Wget

8 10 12 14

Hash size in bits

22

Algorithm Outline

Procedure 1

shr
mov
lea
mov
mov
mov

eax, 4

r8, rbx

rex, [r8+3]
[r8+1], al
[r8+2], rl2b
rdi, rcx

Procedure 2

proc2vec

shr
mov
lea
mov
mov
mov

edx, 4

rl3, rbx

rcx, [rl13+3]
rdi, rcx
[r13+1], dl
[r13+2], rlOb

proc2vec

<

H’\

<

@
o \.—> P(similar)

o
. L
.—> P(— similar)
/
@

23

Evaluation

» Comparing to GitZ [David et. al 2017]
o State-of-the-art fast tool

» All vs. all experiments
1. Compile differently

2. Predict similarities (n? predictions)
3. Grade using CROC

24

Evaluation

» Accuracy results

> Improved accuracy
o In all experiments

U0Esh D Lavall0GitZ
| | l | | |
1 0.99 1 0.99 1 0.99 1 1 1 1 0.99
O 1 N0 0/ "N OR i, 0.97 s N
8 0.96 0.96 0.94 0.95 0.93
Ef 0.9
5
= 08
=
S 07f
| | | | | |
& % X NP Qv o
K)fb“ &QQ %0?:5 Q&\ ,\q(\}Q Q&QO
QQ @\,SQ C)O{/

25

Evaluation

» Throughput

~7000 predictions per second

> On a single core
* Intel Xeon E5-2640

» GitZ throughput is ~30 predictions per second (200X improvement)

26

Evaluation

» Does it scale?

* Yes!
» With the number of cores

* Procedure vectors are independent

- Model can be replicated

27

Future Work

» Vision: inst2vec

> Find meaningful representations for instructions
- Capture latent factors

o Employ NLP techniques for similarity detection

28

Binary Similarity Using ML

Noam Shalev Nimrod Partush

_~

¥

TECHNION

Israel Institute of Technology

Thank You!

noams@technion.ac.il

29

